Role of Neurexin-1β and Neuroligin-1 in Cognitive Dysfunction After Subarachnoid Hemorrhage in Rats

Author:

Shen Haitao1,Chen Zhouqing1,Wang Yang1,Gao Anju1,Li Haiying1,Cui Yonghua1,Zhang Li1,Xu Xiang1,Wang Zhong1,Chen Gang1

Affiliation:

1. From the Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China (H.S., Z.C., Y.W., A.G., H.L., Y.C., L.Z., X.X., Z.W., G.C.); and Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, Anhui, China (Y.W.).

Abstract

Background and Purpose— Neurexin-1β and neuroligin-1 play an important role in the formation, maintenance, and regulation of synaptic structures. This study is to estimate the potential role of neurexin-1β and neuroligin-1 in subarachnoid hemorrhage (SAH)-induced cognitive dysfunction. Methods— In vivo, 228 Sprague–Dawley rats were used. An experimental SAH model was induced by single blood injection to prechiasmatic cistern. Primary cultured hippocampal neurons were exposed to oxyhemoglobin to mimic SAH in vitro. Specific small interfering RNAs and expression plasmids for neurexin-1β and neuroligin-1 were exploited both in vivo and in vitro. Western blot, immunofluorescence, immunoprecipitation, neurological scoring, and Morris water maze were performed to evaluate the mechanism of neurexin-1β and neuroligin-1, as well as neurological outcome. Results— Both in vivo and in vitro experiments showed SAH-induced decrease in the expressions of neurexin-1β and neuroligin-1 and the interaction between neurexin-1β and neuroligin-1 in neurons. In addition, the interaction between neurexin-1β and neuroligin-1 was reduced by their knockdown and increased by their overexpression. The formation of excitatory synapses was inhibited by oxyhemoglobin treatment, which was significantly ameliorated by overexpression of neurexin-1β and neuroligin-1 and aggravated by the knockdown of neurexin-1β and neuroligin-1. More importantly, neurexin-1β and neuroligin-1 overexpression ameliorated SAH-induced cognitive dysfunction, whereas neurexin-1β and neuroligin-1 knockdown induced an opposite effect. Conclusions— Enhancing the expressions of neurexin-1β and neuroligin-1 could promote the interaction between them and the formation of excitatory synapses, which is helpful to improve cognitive dysfunction after SAH. Neurexin-1β and neuroligin-1 might be good targets for improving cognitive function after SAH.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3