Sonic Hedgehog Regulates Ischemia/Hypoxia-Induced Neural Progenitor Proliferation

Author:

Sims John R.1,Lee Sae-Won1,Topalkara Kamil1,Qiu Jianhua1,Xu Jian1,Zhou Zhipeng1,Moskowitz Michael A.1

Affiliation:

1. From the Departments of Radiology and Neuroscience Center (J.R.S., S.W.L., K.T., J.Q., Z.Z., M.A.M.), Neurology (J.R.S., J.X.), and Neurosurgery (J.R.S.) Harvard Medical School, Massachusetts General Hospital, Stroke and Neurovascular Regulation Laboratory, Charlestown, Mass.

Abstract

Background and Purpose— Sonic hedgehog (Shh) protein is required for the maintenance of neural progenitor cells (NPCs) in the embryonic and adult hippocampus. Brain ischemia causes increased proliferation of hippocampal NPCs. We therefore examined whether Shh regulates the increase in proliferation of NPCs after ischemia/hypoxia. Methods— Male SV129 mice were exposed to a 20-minute middle cerebral artery occlusion; hippocampi were then analyzed for Shh mRNA and protein expression by real-time polymerase chain reaction, immunoblot, and immunohistochemistry. Primary cell cultures of neurons, astrocytes, and NPCs were exposed to 16 hours of hypoxia (1% O 2 ) and analyzed by real-time polymerase chain reaction and immunoblot for Shh expression. Proliferation of NPCs, in vivo and in vitro, was measured by bromodeoxyuridine incorporation. Results— Among the cell types examined in vitro, only NPC and neurons increased Shh mRNA under hypoxic conditions. Furthermore, hypoxia increased proliferation of NPCs and this proliferation was enhanced by the addition of recombinant Shh or blocked by the pathway-specific inhibitor, cyclopamine. Middle cerebral artery occlusion was associated with a transient 2-fold increase in the mRNA encoding both Shh and its transcription factor, Gli1 , 0.5 days after ischemia. Within the hippocampus, Shh protein was increased approximately 3-fold 3 and 7 days after ischemia and was observed predominantly within cells in the CA3 and hilar regions. Shh was expressed only in mature neurons. In vivo, cyclopamine suppressed ischemia-induced proliferation of subgranular NPCs. Conclusion— The Shh pathway plays a role in the proliferation of NPCs induced by ischemia/hypoxia and might participate in injury remodeling.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3