Staging Hemodynamic Failure With Blood Oxygen-Level–Dependent Functional Magnetic Resonance Imaging Cerebrovascular Reactivity

Author:

Fierstra Jorn1,van Niftrik Christiaan1,Warnock Geoffrey1,Wegener Susanne1,Piccirelli Marco1,Pangalu Athina1,Esposito Giuseppe1,Valavanis Antonios1,Buck Alfred1,Luft Andreas1,Bozinov Oliver1,Regli Luca1

Affiliation:

1. From the Departments of Neurosurgery (J.F., C.v.N., G.E., O.B., L.R.), Neuroradiology (M.P., A.V.), Neurology (S.W., A.L.), Pharmacology and Toxicology (G.W.), and Nuclear Medicine (A.B.), Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland.

Abstract

Background and Purpose— Increased stroke risk correlates with hemodynamic failure, which can be assessed with ( 15 O-)H 2 O positron emission tomography (PET) cerebral blood flow (CBF) measurements. This gold standard technique, however, is not established for routine clinical imaging. Standardized blood oxygen-level–dependent (BOLD) functional magnetic resonance imaging+CO 2 is a noninvasive and potentially widely applicable tool to assess whole-brain quantitative cerebrovascular reactivity (CVR). We examined the agreement between the 2 imaging modalities and hypothesized that quantitative CVR can be a surrogate imaging marker to assess hemodynamic failure. Methods— Nineteen data sets of subjects with chronic cerebrovascular steno-occlusive disease (age, 60±11 years; 4 women) and unilaterally impaired perfusion reserve on Diamox-challenged ( 15 O-)H 2 O PET were studied and compared with a standardized BOLD functional magnetic resonance imaging+CO 2 examination within 6 weeks (8±19 days). Agreement between quantitative CBF- and CVR-based perfusion reserve was assessed. Hemodynamic failure was staged according to PET findings: stage 0: normal CBF, normal perfusion reserve; stage I: normal CBF, decreased perfusion reserve; and stage II: decreased CBF, decreased perfusion reserve. The BOLD CVR data set of the same subjects was then matched to the corresponding stage of hemodynamic failure. Results— PET-based stage I versus stage II could also be clearly separated with BOLD CVR measurements (CVR for stage I 0.11 versus CVR for stage II −0.03; P <0.01). Hemispheric and middle cerebral artery territory difference analyses (ie, affected versus unaffected side) showed a significant correlation for CVR impairment in the affected hemisphere and middle cerebral artery territory ( P <0.01, R 2 =0.47 and P =0.02, R 2 = 0.25, respectively). Conclusions— BOLD CVR corresponded well to CBF perfusion reserve measurements obtained with ( 15 O-)H 2 O-PET, especially for detecting hemodynamic failure in the affected hemisphere and middle cerebral artery territory and for identifying hemodynamic failure stage II. BOLD CVR may, therefore, be considered for prospective studies assessing stroke risk in patients with chronic cerebrovascular steno-occlusive disease, in particular because it can potentially be implemented in routine clinical imaging.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3