Endogenous nitric oxide protects against platelet aggregation and cyclic flow variations in stenosed and endothelium-injured arteries.

Author:

Yao S K1,Ober J C1,Krishnaswami A1,Ferguson J J1,Anderson H V1,Golino P1,Buja L M1,Willerson J T1

Affiliation:

1. Department of Cardiology Research, Texas Heart Institute, Houston.

Abstract

BACKGROUNDThis study was designed to test the hypothesis that endogenously produced nitric oxide protects against platelet aggregation and cyclic flow variations in stenosed and endothelium-injured arteries of mongrel dogs.METHODS AND RESULTSNG-Monomethyl-L-arginine (L-NMMA), an inhibitor of nitric oxide formation, was administered at 5 mg/kg to 15 dogs after the left anterior descending coronary artery was mechanically injured and narrowed by external constrictors and to nine dogs before endothelial injury of the femoral artery and after injury and moderate arterial constriction. Treatment with L-NMMA resulted in cyclic flow variations (as detected by external Doppler flow probes) in the left anterior descending artery of seven of 15 dogs and in the femoral artery of four of nine dogs after endothelial injury. L-Arginine, the precursor for nitric oxide synthesis, was administered at 60 mg/kg and abolished cyclic flow variations in each of the 11 dogs. D-Arginine did not change the L-NMMA-induced cyclic flow variations. Saline infusion did not induce or change cyclic flow variations in any of the animals. Acetylcholine (1, 10, and 100 micrograms/min; n = 9) was administered in the femoral artery of nine additional dogs before and after endothelial injury in moderately stenosed femoral arteries. Acetylcholine did not induce cyclic flow variations in any animal; however, it did increase the severity of cyclic flow variations that developed in severely stenosed arteries. The diameter of the femoral artery was measured by intravascular ultrasound imaging. L-NMMA caused vasoconstriction of normal arteries, but no change was detected in endothelium-injured arteries. In contrast, L-arginine caused vasodilation of normal arteries, but, again, no change was noted in endothelium-injured arteries. Acetylcholine dilated normal femoral arteries but constricted arteries with endothelial injury. In both in vitro and ex vivo platelet studies, L-NMMA enhanced platelet aggregation, whereas L-arginine significantly reduced platelet aggregation. D-Arginine and acetylcholine showed no effect on platelet aggregation.CONCLUSIONSPromotion of nitric oxide production decreases platelet aggregation and may eliminate cyclic flow variations, whereas a reduction in nitric oxide formation enhances platelet aggregation and may induce cyclic flow variations. Acetylcholine causes vasoconstriction at the femoral arterial site of endothelial injury and may increase the severity of cyclic flow variations.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3