Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans.

Author:

Stamler J S1,Loh E1,Roddy M A1,Currie K E1,Creager M A1

Affiliation:

1. Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass 02115.

Abstract

BACKGROUND The endothelium synthesizes and releases a relaxing factor with the physiochemical properties of nitric oxide (NO). However, the role of endothelium-derived NO in the basal regulation of systemic and pulmonary vascular resistance in humans is not known. Our primary objectives were to determine the effects of inhibiting NO synthesis on blood pressure and systemic vascular resistance and to establish the role of endothelium-derived NO in the regulation of normoxic pulmonary vascular tone. METHODS AND RESULTS We studied the systemic and pulmonary hemodynamic effects of NG-monomethyl-L-arginine (L-NMMA, 0.03 to 1.0 mg.kg-1.min-1 IV), an NO synthase inhibitor, in 11 healthy volunteers, aged 33 +/- 2 years. An arterial cannula and a pulmonary artery catheter were placed in each subject to measure blood pressure, pulmonary artery pressure, and pulmonary capillary wedge pressure. Cardiac output was determined by the Fick technique, and systemic and pulmonary vascular resistances were calculated. Serum NO levels (free and protein bound) were measured by chemiluminescence in 5 subjects. Six of the subjects also received phenylephrine (25 to 100 micrograms/min IV) to compare the cardiac hemodynamic effects of L-NMMA with those of a direct-acting vasoconstrictor. L-NMMA caused dose-dependent increases in both blood pressure and systemic vascular resistance. At the highest dose of L-NMMA, there was a 15.5 +/- 1.3% increase in mean blood pressure and a 63.4 +/- 8.2% increase in systemic vascular resistance (each P < .01). Pulmonary vascular resistance increased 39.8 +/- 9.4% (P < .01), whereas mean pulmonary artery pressure did not change. Administration of L-NMMA also reduced cardiac output by 27.8 +/- 2.9% and stroke volume by 15.4 +/- 3.5% (each P < .01). Serum NO levels decreased 65 +/- 10% from basal values (P < .05), confirming inhibition of endogenous NO production. Phenylephrine increased blood pressure to a level comparable to that observed with L-NMMA. The decline in stroke volume was greater with L-NMMA than with phenylephrine (P < .01). CONCLUSIONS This study demonstrates that basal release of endothelium-derived NO is directly involved in the determination of systemic vascular resistance and, therefore, blood pressure in healthy humans. In addition, NO regulates basal normoxic pulmonary vascular tone. The complex hemodynamic effects of NO are composite properties of its actions on systemic and pulmonary vascular resistance and cardiac function.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference49 articles.

1. Vascular endothelial cells synthesize nitric oxide from L-arginine

2. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide.

3. Nitric oxide as a secretory product of mammalian cells

4. Nitric oxide: physiology, pathophysiology, and pharmacology;Moncada S;Pharmacol Rev.,1991

5. Mammalian nitric oxide synthases;Stuehr DJ;Adv Enzymol Relat Areas Mol Biol.,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3