Nitric oxide mediates flow-dependent epicardial coronary vasodilation to changes in pulse frequency but not mean flow in conscious dogs.

Author:

Canty J M1,Schwartz J S1

Affiliation:

1. Department of Medicine, State University of New York at Buffalo, School of Medicine and Biomedical Sciences 14215-3012.

Abstract

BACKGROUND Although epicardial coronary arteries dilate in response to changes in flow, the mechanisms responsible for this and the mechanical stimuli that are sensed by the endothelium are not completely defined. We performed the present study to determine the importance of nitric oxide in eliciting epicardial dilation to sustained changes in mean flow and pulse frequency in the coronary circulation of conscious dogs. METHODS AND RESULTS Dogs were chronically instrumented with a circumflex coronary occluder, piezoelectric crystals to measure epicardial diameter, and a coronary artery catheter placed distal to the crystals for intracoronary drug infusion. Studies were conducted in dogs in the conscious state. We inhibited nitric oxide production by administering the arginine analog N omega-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg IV), which attenuated the epicardial artery diameter changes to left atrial infusions of acetylcholine (10 micrograms/min) from 140 +/- 23 (+/- SEM) to 46 +/- 20 microns (P < .05). Epicardial dilation to sustained increases in mean coronary artery at a constant heart rate. Intracoronary adenosine increased mean flow to the same extent (180 +/- 21 versus 177 +/- 24 mL/min after L-NAME, P = NS), but inhibiting nitric oxide production had no effect on flow-mediated epicardial dilation, with coronary diameter increasing by 264 +/- 36 microns under control conditions and 294 +/- 67 microns after L-NAME (P = NS). In contrast, when pulse frequency was increased by pacing to a rate of 200 beats per minute, mean coronary flow increased to a similar level (78 +/- 9 versus 75 +/- 9 mL/min after L-NAME), but the epicardial diameter change to pacing was attenuated from 170 +/- 29 microns under control conditions to 54 +/- 23 microns after L-NAME (P < .01). CONCLUSIONS These results demonstrate that in vivo, nitric oxide production is primarily responsible for eliciting epicardial coronary vasodilation to endothelium-dependent agonists and changes in coronary flow pulse frequency. The failure of L-NAME to affect epicardial vasodilation during sustained increases in mean flow when pulse frequency is held constant suggests that additional mechanisms are involved in flow-mediated vasodilation of epicardial coronary arteries.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In Vitro Flow Chamber Design for the Study of Endothelial Cell (Patho)Physiology;Journal of Biomechanical Engineering;2021-10-11

2. A chicken and egg conundrum: coronary microvascular dysfunction and heart failure with preserved ejection fraction;American Journal of Physiology-Heart and Circulatory Physiology;2018-06-01

3. Regulation of myocardial oxygen delivery in response to graded reductions in hematocrit: role of K+ channels;Basic Research in Cardiology;2017-09-30

4. Regulation of Coronary Blood Flow;Comprehensive Physiology;2017-03-16

5. Microcirculatory Dysfunction;Physiological Assessment of Coronary Stenoses and the Microcirculation;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3