Adrenergic effects on the biology of the adult mammalian cardiocyte.

Author:

Mann D L1,Kent R L1,Parsons B1,Cooper G1

Affiliation:

1. Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston.

Abstract

BACKGROUND To delineate the mechanism(s) of catecholamine-mediated cardiac toxicity, we exposed cultures of adult cardiac muscle cells, or cardiocytes, to a broad range of norepinephrine concentrations. METHODS AND RESULTS Norepinephrine stimulation resulted in a concentration-dependent decrease in cardiocyte viability, as demonstrated by a significant decrease in viable rod-shaped cells and a significant release of creatine kinase from cells in norepinephrine-treated cultures. Norepinephrine-mediated cell toxicity was attenuated significantly by beta-adrenoceptor blockade and mimicked by selective stimulation of the beta-adrenoceptor, whereas the effects mediated by the alpha-adrenoceptor were relatively less apparent. When norepinephrine stimulation was examined in terms of cardiocyte anabolic activity, there was a concentration-dependent decrease in the incorporation of [3H]phenylalanine and [3H]uridine into cytoplasmic protein and nuclear RNA, respectively. The decrease in cytoplasmic labeling was largely attenuated by beta-adrenoceptor blockade and mimicked by selective stimulation of the beta-adrenoceptor, but alpha-adrenoceptor stimulation resulted in relatively minor decreases in cytoplasmic labeling. The norepinephrine-induced toxic effect appeared to be the result of cyclic AMP-mediated calcium overload of the cell, as suggested by studies in which pharmacological strategies that increased intracellular cyclic AMP led to decreased cell viability, as well as studies that showed that influx of extracellular calcium through the verapamil-sensitive calcium channel was necessary for the induction of cell lethality. Additional time-course studies showed that norepinephrine caused a rapid, fourfold increase in intracellular cyclic AMP, followed by a 3.2-fold increase in intracellular calcium [( Ca2+]i). CONCLUSIONS These results constitute the initial demonstration at the cellular level that adrenergic stimulation leads to cyclic AMP-mediated calcium overload of the cell, with a resultant decrease in synthetic activity and/or viability.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 748 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3