Critical Role of Mst1 in Vascular Remodeling After Injury

Author:

Ono Hiroki1,Ichiki Toshihiro1,Ohtsubo Hideki1,Fukuyama Kae1,Imayama Ikuyo1,Hashiguchi Yasuko1,Sadoshima Junichi1,Sunagawa Kenji1

Affiliation:

1. From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan; and the Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, Newark.

Abstract

Objective— Apoptosis of vascular smooth muscle cells (VSMCs) is observed in chronic vascular lesions such as atherosclerotic plaques and is believed to contribute to the vascular remodeling process. Mst1 is a ubiquitously expressed serine/threonine kinase known to be activated in response to a wide variety of nonphysiological apoptotic stimuli. However, little is known of the physiological function of Mst1, and its role in VSMCs has never been examined. Methods and Results— Treatment of VSMCs with staurosporine induced apoptosis and cleavage of Mst1, which is a marker of its activation, as well as activation of caspase 3. Adenovirus-mediated overexpression of wild-type Mst1 (AdMst1) in VSMCs increased apoptotic cells with activation of caspase 3. Mst1 was induced and activated in the balloon-injured rat carotid artery. Infection with AdMst1 in balloon-injured rat carotid artery suppressed neointimal formation compared with infection with AdLacZ. Infection with AdMst1 significantly increased the apoptotic cell number in the neointima compared with infection with AdLacZ without affecting BrdU incorporation. Conclusion— Our results suggest that Mst1 plays an important role in the induction of apoptosis of VSMCs, mediating the vascular remodeling process, and may be a potential therapeutic target for vascular proliferative diseases.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3