Pulsatile flow in a model carotid bifurcation.

Author:

Ku D N,Giddens D P

Abstract

Pulsatile flow in an in vitro model of the human carotid bifurcation was studied by flow visualization using hydrogen bubble techniques. A glass model was constructed after determining an average geometry from 57 biplanar angiograms of 22 subjects ranging from 34 to 77 years of age. The flow pulse used was a half-sine wave superimposed upon a mean flow. Maximum and minimum values of the instantaneous Reynolds number were 1200 and 400, respectively, based upon conditions in the common carotid model artery; the frequency parameter was 6.0. The division of flow into the internal external branches was 70:30. Visualization by hydrogen bubbles demonstrated significant deviations from steady flow behavior. Flow separated in the carotid sinus over the entire cycle, but the location and extent of separation varied strongly. The direction of flow near the walls of the model changed sharply during the cycle except for the region near the apex of the bifurcation where the orientation of streaklines was more nearly unidirectional at all times. Bubbles entering the separated flow region tended to remain entrapped there for several cycles. Rapid dispersion of bubbles occurred in the internal branch near the end of systole, suggesting the presence of flow disorder. The location of low wall shear stresses, directionally varying stresses, and longer residence times for fluid elements appears to coincide with the localization of early atheromatous plaques in human carotid specimens.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Reference19 articles.

1. Flaud P. Influence dea proprietes rtieologlques non lineares sur la dynamlque des ecoulements dans un tuyau deformable [Dissertation]. Paris: University of Paris 1979

2. Caro CO PedleyTT SchroterRC Seed WA.The mechanics of the circulation. New York: Oxford University Press 1978:398

3. Steady flow in a model of the human carotid bifurcation. Part I—Flow visualization

4. Steady flow in a model of the human carotid bifurcation. Part II—Laser-Doppler anemometer measurements

5. Flow studies in a model carotid bifurcation.

Cited by 196 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3