Cardiomyocyte Sirt (Sirtuin) 7 Ameliorates Stress-Induced Cardiac Hypertrophy by Interacting With and Deacetylating GATA4

Author:

Yamamura Satoru1,Izumiya Yasuhiro2,Araki Satoshi13,Nakamura Taishi1,Kimura Yuichi1,Hanatani Shinsuke1,Yamada Toshihiro1,Ishida Toshifumi1,Yamamoto Masahiro1,Onoue Yoshiro1,Arima Yuichiro1,Yamamoto Eiichiro1,Sunagawa Yoichi4,Yoshizawa Tatsuya3,Nakagata Naomi5,Bober Eva6,Braun Thomas6,Sakamoto Kenji1,Kaikita Koichi1,Morimoto Tatsuya4,Yamagata Kazuya37,Tsujita Kenichi17

Affiliation:

1. From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan

2. Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Japan (Y.I.)

3. Medical Biochemistry (S.A., T. Yoshizawa, K.Y.), Faculty of Life Sciences, Kumamoto University, Japan

4. Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Japan (Y.S., T.M.)

5. Division of Reproductive Engineering, Center for Animal Resources and Development (N.N.), Kumamoto University, Japan.

6. Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (E.B., T.B.)

7. Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences (K.Y., K.T.), Kumamoto University, Japan.

Abstract

Sirt (Sirtuin) 7, the most recently identified mammalian sirtuin, has been shown to contribute to appropriate wound healing processes after acute cardiovascular insult. However, its role in the development of cardiac remodeling after pressure overload is unclear. Cardiomyocyte-specific Sirt7-knockout and control mice were subjected to pressure overload induced by transverse aortic constriction. Cardiac hypertrophy and functions were then examined in these mice. Sirt7 protein expression was increased in myocardial tissue after pressure overload. Transverse aortic constriction-induced increases in heart weight/tibial length were significantly augmented in cardiomyocyte-specific Sirt7-knockout mice compared with those of control mice. Histological analysis showed that the cardiomyocyte cross-sectional area and fibrosis area were significantly larger in cardiomyocyte-specific Sirt7-deficient mice. Cardiac contractile functions were markedly decreased in cardiomyocyte-specific Sirt7-deficient mice. Mechanistically, we found that Sirt7 interacted directly with GATA4 and that the exacerbation of phenylephrine-induced cardiac hypertrophy by Sirt7 knockdown was decreased by GATA4 knockdown. Sirt7 deacetylated GATA4 in cardiomyocytes and regulated its transcriptional activity. Interestingly, we demonstrated that treatment with nicotinamide mononucleotide, a known key NAD + intermediate, ameliorated agonist-induced cardiac hypertrophies in a Sirt7-dependent manner in vitro. Sirt7 deficiency in cardiomyocytes promotes cardiomyocyte hypertrophy in response to pressure overload. Sirt7 exerts its antihypertrophic effect by interacting with and promoting deacetylation of GATA4.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3