Leptin Restores Endothelial Function via Endothelial PPARγ-Nox1–Mediated Mechanisms in a Mouse Model of Congenital Generalized Lipodystrophy

Author:

Bruder-Nascimento Thiago12,Faulkner Jessica L.1,Haigh Stephen1,Kennard Simone1,Antonova Galina1,Patel Vijay S.3,Fulton David J.R.1,Chen Weiqin4,Belin de Chantemèle Eric J.15

Affiliation:

1. From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University

2. Department of Pediatrics, Division of Endocrinology, University of Pittsburgh, PA (T.B.-N.).

3. Section of Cardiothoracic Surgery, Department of Surgery (V.S.P.), Medical College of Georgia, Augusta University

4. Department of Physiology (W.C.), Medical College of Georgia, Augusta University

5. Department of Medicine, Division of Cardiology (E.J.B.), Medical College of Georgia, Augusta University

Abstract

Leptin is the current treatment for metabolic disorders associated with acquired and congenital generalized lipodystrophy (CGL). Although excess leptin levels have been associated with vascular inflammation and cardiovascular disease in the context of obesity, the effects of chronic leptin treatment on vascular function remain unknown in CGL. Here, we hypothesized that leptin treatment will improve endothelial function via direct vascular mechanisms. We investigated the cardiovascular consequences of leptin deficiency and supplementation in male gBscl2 −/− ( Berardinelli-Seip 2 gene–deficient) mice—a mouse model of CGL. CGL mice exhibited reduced adipose mass and leptin levels, as well as impaired endothelium-dependent relaxation. Blood vessels from CGL mice had increased NADPH Oxidase 1 (Nox1) expression and reactive oxygen species production, and selective Nox1 inhibition restored endothelial function. Remarkably, chronic and acute leptin supplementation restored endothelial function via a PPARγ-dependent mechanism that decreased Nox1 expression and reactive oxygen species production. Selective ablation of leptin receptors in endothelial cells promoted endothelial dysfunction, which was restored by Nox1 inhibition. Lastly, we confirmed in aortic tissue from older patients undergoing cardiac bypass surgery that acute leptin can promote signaling in human blood vessels. In conclusion, in gBscl2 −/− mice, leptin restores endothelial function via peroxisome proliferator activated receptor gamma-dependent decreases in Nox1. Furthermore, we provide the first evidence that vessels from aged patients remain leptin sensitive. These data reveal a new direct role of leptin receptors in the control of vascular homeostasis and present leptin as a potential therapy for the treatment of vascular disease associated with low leptin levels.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3