Neointimal Tissue Response at Sites of Coronary Stenting in Humans

Author:

Komatsu Ryushi1,Ueda Makiko1,Naruko Takahiko1,Kojima Akiko1,Becker Anton E.1

Affiliation:

1. From the Department of Pathology, Osaka City University Medical School (R.K., M.U.); the Department of Cardiology, Osaka City General Hospital (T.N.); the Department of Food and Nutrition, Faculty of Human Life Science, Osaka City University (A.K.), Osaka, Japan; and the Department of Cardiovascular Pathology, Academic Medical Center, University of Amsterdam, the Netherlands (A.E.B.).

Abstract

Background —Experimental animal studies have shown that coronary stenting induces neointimal proliferation. However, the histopathological events after coronary stenting in humans have not been studied systematically. Methods and Results —We investigated 11 stented coronary arteries (9 Palmaz-Schatz stents, 1 Wiktor stent, and 1 ACS Multi-Link stent) obtained from 11 patients who had died 2 days to 21 months after stenting. We focused on gross, histological, and immunohistochemical aspects of the repair processes. Two patients developed symptoms of restenosis. Serial sections were stained with antibodies against smooth muscle cells (SMCs), macrophages, and endothelial cells. At 9 and 12 days after stenting, the stent sites showed thrombus formation with early formation of neointima composed of abundant macrophages and α-actin–negative spindle cells. From 64 days on, all sites with stenting showed a distinct layer of neointima, albeit to varying degrees. In nonrestenotic lesions, neointimal thickening was markedly less than in restenotic lesions but without qualitative differences; the neointima contained macrophages but was composed predominantly of α-actin-positive SMCs. Conclusions —These observations strongly support the concept that neointimal proliferation in humans is a process of staged redifferentiation of SMCs, which may cause in-stent stenosis. Moreover, the exuberant neointimal proliferation with accumulation of macrophages and extensive neovascularization at sites of stent restenosis suggests a role for organization of mural thrombus.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3