Delivery of Colloidal Particles and Red Blood Cells to Tissue Through Microvessel Ruptures Created by Targeted Microbubble Destruction With Ultrasound

Author:

Price Richard J.1,Skyba Danny M.1,Kaul Sanjiv1,Skalak Thomas C.1

Affiliation:

1. From the Department of Biomedical Engineering and the Cardiovascular Division, University of Virginia, Charlottesville, Va.

Abstract

Background —We have previously shown that the application of ultrasound to thin-shelled microbubbles flowing through small microvessels (<7 μm in diameter) produces vessel wall ruptures in vivo. Because many intravascular drug- and gene-delivery vehicles are limited by the endothelial barrier, we hypothesized that this phenomenon could be used to deliver drug-bearing vehicles to tissue. Methods and Results —An exteriorized rat spinotrapezius muscle preparation was used. Intravascular fluorescent red blood cells and polymer microspheres (PM) (205 and 503 nm in diameter) were delivered to the interstitium of rat skeletal muscle through microvessel ruptures created by insonifying microbubbles in vivo. On intravital microscopy, mean dispersion areas per rupture for red blood cells, 503-nm PM, and 205-nm PM were 14.5×10 3 μm 2 , 24.2×10 3 μm 2 , and 27.2×10 3 μm 2 , respectively. PM dispersion areas were significantly larger than the mean dispersion area for red blood cells ( P <0.05). Conclusions —Microvessel ruptures caused by insonification of microbubbles in vivo may provide a minimally invasive means for delivering colloidal particles and engineered red blood cells across the endothelial lining of a targeted tissue region.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference12 articles.

1. Colloidal Systems for Tumor Targeting

2. Delivery of Molecular and Cellular Medicine to Solid Tumors

3. Simultaneous Measurement of Liposome Extravasation and Content Release in Tumors

4. Dayton P Morgan K Allietta M Klibanov A Brandenburger G Ferrara K. Simultaneous optical and acoustical observations of contrast agents. IEEE Ultrasonics Symp . 1997;1583–1591.

Cited by 341 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3