Respiratory Sinus Arrhythmia

Author:

Hayano Junichiro1,Yasuma Fumihiko1,Okada Akiyoshi1,Mukai Seiji1,Fujinami Takao1

Affiliation:

1. the Third Department of Internal Medicine (J.H., A.O., M.S., T.F.), Nagoya City University Medical School, Nagoya, and the First Department of Internal Medicine (F.Y.), Nagoya University School of Medicine, Nagoya, Japan.

Abstract

Background The primary mechanisms of respiratory sinus arrhythmia (RSA) are understood to be the modulation of cardiac vagal efferent activity by the central respiratory drive and the lung inflation reflex, and the degree of RSA increases with cardiac vagal activity. However, it is unclear whether RSA serves an active physiological role or merely reflects a passive cardiovascular response to respiratory input. We hypothesized that RSA benefits pulmonary gas exchange by matching perfusion to ventilation within each respiratory cycle. Methods and Results In seven anesthetized dogs, a model simulating RSA was made. After elimination of endogenous autonomic activities, respiration-linked heartbeat fluctuations were generated by electrical stimulation of the right cervical vagus during negative pressure ventilation produced by phrenic nerve stimulation (diaphragm pacing). The vagal stimulation was performed in three conditions: phasic stimulation during expiration (artificial RSA) and during inspiration (inverse RSA) and constant stimulation (control) causing the same number of heartbeats per minute as the phasic stimulations. Although tidal volume, cardiac output, and arterial blood pressure were unchanged, artificial RSA decreased the ratio of physiological dead space to tidal volume (V d /V t ) and the fraction of intrapulmonary shunt (Q sp /Q t ) by 10% and 51%, respectively, and increased O 2 consumption by 4% compared with control. Conversely, reverse RSA increased V d /V t and Q sp /Q t by 14% and 64%, respectively, and decreased O 2 consumption by 14%. Conclusions These results support our hypothesis that RSA benefits the pulmonary gas exchange and may improve the energy efficiency of pulmonary circulation by “saving heartbeats.”

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3