Cellular Basis for the Electrocardiographic J Wave

Author:

Yan Gan-Xin1,Antzelevitch Charles1

Affiliation:

1. From the Masonic Medical Research Laboratory, Utica, NY.

Abstract

Background The J wave is a deflection that appears in the ECG as a late delta wave following the QRS or as a small secondary R wave (R′). Also referred to as an Osborn wave, the J wave has been observed in the ECG of animals and humans for more than four decades, yet the mechanism underlying its manifestation is poorly understood. The present study investigates the cellular basis for the J wave using an isolated arterially perfused preparation consisting of a wedge of canine right or left ventricle. Methods and Results A 12-lead ECG was initially recorded in vivo. After isolation and arterial perfusion of the right or left ventricular wedge, transmembrane action potentials were simultaneously recorded from epicardial, M region, and endocardial transmural sites with three floating microelectrodes. A transmural ECG was recorded concurrently. A J wave was observed at the R-ST junction of the ECG in 17 of 20 adult dogs, usually in leads II, III, aVR, and aVF and the mid to lateral precordial leads. The J wave in the transmural ECG recorded across the wedge was closely associated with the presence of a prominent action potential notch in epicardium but not endocardium. The shape and amplitude of the J wave were found to depend on (1) the transmural distribution of the action potential notch amplitude, (2) the relative time course of the early phases of the action potential (width of notch) at different sites within the wall, (3) sequence of activation, and (4) conduction time across the wall. A highly significant correlation was demonstrated between the amplitude of the epicardial action potential notch and the amplitude of the J wave recorded during interventions that alter the appearance of the electrocardiographic J wave, including hypothermia, premature stimulation, and block of the transient outward current by 4-aminopyridine. Ventricular activation from endocardium to epicardium, with epicardium activated last, was also an important prerequisite for the appearance of the J wave. This sequence permits the establishment of a voltage gradient of the early phases of the action potential after activation (ie, the QRS) is complete. Conclusions Our results provide the first direct evidence in support of the hypothesis that heterogeneous distribution of a transient outward current–mediated spike-and-dome morphology of the action potential across the ventricular wall underlies the manifestation of the electrocardiographic J wave. The presence of a prominent action potential notch in epicardium but not endocardium is shown to provide a voltage gradient that manifests as a J (Osborn) wave or elevated J-point in the ECG.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 700 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3