New approaches to thrombolytic therapy.

Author:

Collen D,Lijnen H R

Abstract

Tissue-type plasminogen activator (t-PA), purified from the culture fluid of a stable human melanoma cell line, is a serine protease, different from urokinase, with a molecular weight of about 70,000. It is composed of one polypeptide chain, which is converted to a two-chain molecule by limited plasmic action. Activation of plasminogen to plasmin occurs by cleavage of the Arg 560-Val 561 peptide bond. Kinetic analysis has shown that the activation obeys Michaelis-Menten kinetics and that the presence of fibrin strikingly enhances the activation rate by increasing the affinity of plasminogen for fibrin-bound t-PA. The directed action of plasmin toward fibrin in vivo, might be explained by the low Michaelis constant in the presence of fibrin (0.16 microM), which allows efficient plasminogen activation on a fibrin clot, while its high value in the absence of fibrin (65 microM) prevents efficient activation in plasma. Plasmin formed on the fibrin surface would then be protected from rapid inactivation by alpha 2-antiplasmin. An important consequence of this molecular model for physiological fibrinolysis is that specific thrombolysis is only expected with the use of a specific plasminogen activator, which confines activation to the fibrin surface. Studies on the thrombolytic properties of purified t-PA in various animal species and in humans have revealed a higher specific thrombolytic activity than urokinase. Thrombolysis could be achieved without causing significant plasminogen activation, alpha 2-antiplasmin consumption, or fibrinogen breakdown. Alternatively, pro-urokinase, the zymogen precursor of urokinase, also displays a certain degree of fibrin specificity. Its mechanism of action and potential therapeutic value remain to be established.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3