Exercise-induced ischemia: the influence of altered relaxation on early diastolic pressures.

Author:

Carroll J D,Hess O M,Hirzel H O,Krayenbuehl H P

Abstract

Left ventricular pressure (LVP) decay and early diastolic pressures were studied at rest and during exercise in three groups of patients. Patients in the ischemia group (n = 15) had coronary artery disease and developed new regional wall motion abnormalities documented by biplane LV cineangiography during exercise. Patients in the control group (n = 4) had a normal exercise response. Patients in the scar group (n = 5) had prior infarction, akinetic scars and no ischemia with exercise. Isovolumic pressure data were used to compute the time constant (T) of LVP decay (from the linear relation of LVP and negative dP/dt) and an extrapolated baseline pressure (PB) at dP/dt = 0. During exercise in the ischemia group, minimal LV diastolic pressure (PL) increased from 9 +/- 3 to 21 +/- 5 mm Hg (p less than 0.001), end-systolic volume increased from 38 +/- 7 to 55 +/- 8 ml/m2 (p less than 0.001) and PB rose from -10 +/- 7 to 11 +/- 8 mm Hg (p less than 0.001); T decreased (from 55 +/- 9 to 37 +/- 8 msec, p less than 0.001), although inadequately, compared with the decrease in the control group (from 49 +/- 15 to 22 +/- 2 msec, p less than 0.01). Relaxation at PL during exercise was incomplete in the ischemia group (2.2 +/- 0.4 T) and complete in the control group (3.8 +/- 0.7 T, p less than 0.05). The time course of LVP fall was extrapolated from the isovolumic period into the passive LV filling phase. The extrapolated pressure at the time PL occurred (PE) rose from 0 +/- 4 to 20 +/- 7 mm Hg with ischemia (p less than 0.001). Thus, the characteristics of LVP decay can account for the elevated early diastolic pressures during ischemia. In contrast, the scar group maintained a low PL during exercise (11 +/- 3 to 8 +/- 3 mm Hg), even though T decreased inadequately (from 66 +/- 10 to 36 +/- 5 msec, p less than 0.01), because PB did not shift upward. Ischemia-related pressure elevations involve both delayed relaxation and a pressure baseline shift. During exercise, LVP decay is normally adjusted to maintain low diastolic pressures; with exercise-induced ischemia, LVP decay is abnormal and early diastolic pressures are severely elevated.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3