Simultaneous Pharmacologic Inhibition of Yes‐Associated Protein 1 and Glutaminase 1 via Inhaled Poly(Lactic‐co‐Glycolic) Acid–Encapsulated Microparticles Improves Pulmonary Hypertension

Author:

Acharya Abhinav P.123,Tang Ying4,Bertero Thomas5ORCID,Tai Yi‐Yin4,Harvey Lloyd D.4ORCID,Woodcock Chen‐Shan C.4,Sun Wei4,Pineda Ricardo6,Mitash Nilay6ORCID,Königshoff Melanie6ORCID,Little Steven R.178910ORCID,Chan Stephen Y.4ORCID

Affiliation:

1. Department of Chemical and Petroleum Engineering University of Pittsburgh PA

2. Biological Design Graduate Program School for the Engineering of Matter, Transport, and Energy Arizona State University Tempe AZ

3. Chemical Engineering School for the Engineering of Matter, Transport, and Energy Arizona State University Tempe AZ

4. Center for Pulmonary Vascular Biology and Medicine Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute Division of Cardiology Department of Medicine University of Pittsburgh School of Medicine PA

5. Université Côte d'AzurCentre national de la recherche scientifique (CNRS) Bienvenue à l'Institut de Pharmacologie Moléculaire et Cellulaire (IPMC) Valbonne France

6. Division of Pulmonary, Allergy, and Critical Care Medicine Department of Medicine University of Pittsburgh School of Medicine PA

7. Department of Immunology University of Pittsburgh School of Medicine PA

8. Department of Bioengineering University of Pittsburgh PA

9. Department of Pharmaceutical Sciences University of Pittsburgh PA

10. Department of Ophthalmology University of Pittsburgh PA

Abstract

Background Pulmonary hypertension (PH) is a deadly disease characterized by vascular stiffness and altered cellular metabolism. Current treatments focus on vasodilation and not other root causes of pathogenesis. Previously, it was demonstrated that glutamine metabolism, as catalyzed by GLS1 (glutaminase 1) activity, is mechanoactivated by matrix stiffening and the transcriptional coactivators YAP1 (yes‐associated protein 1) and transcriptional coactivator with PDZ‐binding motif (TAZ), resulting in pulmonary vascular proliferation and PH. Pharmacologic inhibition of YAP1 (by verteporfin) or glutaminase (by CB‐839) improved PH in vivo. However, systemic delivery of these agents, particularly YAP1 inhibitors, may have adverse chronic effects. Furthermore, simultaneous use of pharmacologic blockers may offer additive or synergistic benefits. Therefore, a strategy that delivers these drugs in combination to local lung tissue, thus avoiding systemic toxicity and driving more robust improvement, was investigated. Methods and Results We used poly(lactic‐co‐glycolic) acid polymer‐based microparticles for delivery of verteporfin and CB‐839 simultaneously to the lungs of rats suffering from monocrotaline‐induced PH. Microparticles released these drugs in a sustained fashion and delivered their payload in the lungs for 7 days. When given orotracheally to the rats weekly for 3 weeks, microparticles carrying this drug combination improved hemodynamic (right ventricular systolic pressure and right ventricle/left ventricle+septum mass ratio), histologic (vascular remodeling), and molecular markers (vascular proliferation and stiffening) of PH. Importantly, only the combination of drug delivery, but neither verteporfin nor CB‐839 alone, displayed significant improvement across all indexes of PH. Conclusions Simultaneous, lung‐specific, and controlled release of drugs targeting YAP1 and GLS1 improved PH in rats, addressing unmet needs for the treatment of this deadly disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3