Hemodynamics in transgenic mice with overexpression of atrial natriuretic factor.

Author:

Barbee R W1,Perry B D1,Ré R N1,Murgo J P1,Field L J1

Affiliation:

1. Division of Research, Alton Ochsner Medical Institutions, New Orleans, LA 70121.

Abstract

The circulatory effects associated with lifelong plasma atrial natriuretic factor (ANF) elevation were examined by generating transgenic mice, which constitutively express a fusion gene consisting of the transthyretin promoter and the ANF structural gene. These mice have chronically elevated ANF levels as compared with their nontransgenic siblings. Transgenic animals exhibited immunoreactive ANF levels that were nearly fivefold higher than those measured in nontransgenic littermates. Systemic and regional hemodynamics and blood volumes were explored by using modifications of the reference microsphere and dilution techniques. Mean arterial pressure was reduced by 24 mm Hg, associated with a 27% reduction in total heart weight. This chronic reduction in blood pressure was due to a 21% reduction in total peripheral resistance, whereas cardiac output, stroke volume, and heart rate were not significantly altered, despite a 15% elevation in plasma volume. Transgenic mice displayed reductions of 35%, 33%, 32%, and 19% in muscle, skin, brain, and renal vascular resistance, respectively, whereas coronary and splanchnic resistances were not significantly altered. The findings complement earlier data from chronically infused normotensive mammals and suggest that these mice are an excellent model for investigating the effects of lifelong ANF elevation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference22 articles.

1. Natriuretic peptidesA family of hormones

2. Growth regulatory properties of atrial natriuretic factor;Appel RG;Am J Physiol.,1992

3. Sympathectomy fails to reveal prominent vasodilation by atrial natriuretic factor.

4. The contribution of atrial natriuretic factor to acute volume natriuresis in rats;Barbee RW;Am J Physiol.,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3