Delayed rectifier outward current and repolarization in human atrial myocytes.

Author:

Wang Z1,Fermini B1,Nattel S1

Affiliation:

1. Department of Medicine, Montreal Heart Institute, Quebec, Canada.

Abstract

Previous work has suggested that the primary time-dependent repolarizing current in human atrium is the transient outward current (Ito), but interventions known to alter the magnitude of the delayed rectifier current (IK) affect atrial electrophysiology and arrhythmias in humans. To explore the potential role of IK in human atrial tissue, we used the whole-cell configuration of the patch-clamp technique to record action potentials and ionic currents in isolated myocytes from human atrium. A delayed outward current was present in the majority of myocytes, activating with a time constant ranging from 348 +/- 61 msec (mean +/- SEM) at -20 mV to 129 +/- 25 msec at +60 mV. The reversal potential of tail currents was linearly related to log [K+]o with a slope of 55 mV per decade, and fully activated tail currents showed inward rectification. The potassium selectivity, kinetics, and voltage dependence were similar to those reported for IK in other cardiac preparations. In cells with both Ito and IK, IK greatly exceeded both components of Ito (Ito1 and Ito2) within 50 msec of a voltage step from -70 to +20 mV. Based on the relative magnitude of Ito and IK, three types of cells could be distinguished: type 1 (58% [73/126] of the cells) displayed a large Ito together with a clear IK, type 2 (13% [17/126] of the cells) displayed only IK, and type 3 (29% [36/126] of the cells) was characterized by a prominent Ito and negligible IK. Consistent differences in action potential morphology were observed, with type 2 cells having a higher plateau and steeper phase 3 slope and type 3 cells showing a triangular action potential and lesser phase 3 slope compared with type 1 cells. We conclude that IK is present in a majority of human atrial myocytes and may play a significant role in their repolarization and that previously observed variability in human atrial action potential morphology may be partially due to differences in the relative magnitude of time-dependent outward currents.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference60 articles.

1. Age-related changes of action potential plateau shape in isolated human atrial fibers;Escande D;Am J Physiol.,1985

2. Two types of transient outward currents in adult human atrial cells;Escande D;Am J Physiol.,1987

3. Contributions of a transient outward current to repolarization in human atrium;Shibata EF;Am J Physiol.,1989

4. Fermini B Wang Z Duan DY Nattel S. Differences in the rate dependence of the transient outward current in rabbit and human atrium.Am JPhysiol. 1992;263(HeartCircPhysiol 32):H1747-H1754.

5. The electrophysiological effects of acetylcholine in single human atrial cells

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3