Effect of reduced aortic compliance on cardiac efficiency and contractile function of in situ canine left ventricle.

Author:

Kelly R P1,Tunin R1,Kass D A1

Affiliation:

1. Department of Internal Medicine, Johns Hopkins Medical Institutions, Baltimore, Md 21205.

Abstract

This study tests the hypothesis that arterial vascular stiffening adversely influences in situ left ventricular contractile function and energetic efficiency. Ten reflex-blocked anesthetized dogs underwent a bypass operation in which a Dacron graft was sewn to the ascending aorta and connected to the infrarenal abdominal aorta via a plastic conduit. Flow was directed through either native aorta or plastic conduit by placement of vascular clamps. Arterial properties were measured from aortic pressure-flow data, and ventricular function was assessed by pressure-volume (PV) relations. Coronary sinus blood was drained via an extracorporeal circuit for direct measurement of myocardial O2 consumption (MVO2). Data at multiple steady-state preload volumes were combined to derive chamber function and energetics relations. Energetic efficiency was assessed by the inverse slope of the MVO2-PV area relation. Directing flow through plastic versus native aorta resulted in a 60-80% reduction in compliance but little change in mean resistance. Arterial pulse pressure rose from 34 to 99 mm Hg (p less than 0.001). Contractile function assessed by the end-systolic PV relation, stroke work-end-diastolic volume relation, and dP/dtmax at matched end-diastolic volume did not significantly change. However, MVO2 increased by 32% (p less than 0.01) and was matched by a rise in PV area, such that the MVO2-PV area relation and efficiency was unaltered. The MVO2 required to sustain a given stroke volume, however, increased from 20% to 40%, depending on the baseline level (p less than 0.001). Thus, whereas the contractile function and efficiency of normal hearts are not altered by ejection into a stiff vascular system, the energetic cost to the heart for maintaining adequate flow is increased. This suggests a mechanism whereby human vascular stiffening may yield little functional decrement at rest but limit reserve capacity under conditions of increased demand.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3