Candesartan Cilexetil Attenuates Arrhythmogenicity Following Pressure Overload in Rats via the Modulation of Cardiac Electrical and Structural Remodeling and Calcium Handling Dysfunction

Author:

Chang Gwo‐Jyh12ORCID,Yeh Yung‐Hsin2,Chen Wei‐Jan2,Ko Yu‐Shien2,Lai Ying‐Ju23,Lee Yun‐Shien45

Affiliation:

1. Graduate Institute of Clinical Medicinal Sciences College of Medicine Chang Gung University Tao‐Yuan Taiwan

2. Cardiovascular Division of Medicine Chang Gung Memorial Hospital Tao‐Yuan Taiwan

3. Department of Respiratory Therapy College of Medicine Chang Gung University Tao‐Yuan Taiwan

4. Genomic Medicine Research Core Laboratory Chang Gung Memorial Hospital Tao‐Yuan Taiwan

5. Department of Biotechnology Ming Chuan University Tao‐Yuan Taiwan

Abstract

Background Cardiac hypertrophy is associated with abnormal electrophysiology and increased arrhythmia risk. This study assessed whether candesartan cilexetil, an angiotensin II type 1 receptor blocker, could suppress arrhythmogenecity by attenuating cardiac electrical remodeling and calcium mishandling in rats with pressure‐overload hypertrophy. Methods and Results Male Sprague‐Dawley rats were randomly subjected to abdominal aorta banding or sham procedure and received either candesartan cilexetil (3.0 mg/kg per day) or vehicle by gavage for 5 weeks. Pressure overload was characterized by compensated left ventricular (LV) hypertrophy and fibrosis, increased LV pressure and its decay time, and prolonged corrected QT interval, all of which were attenuated by candesartan cilexetil treatment. Candesartan cilexetil–treated banded rat hearts displayed shorter QT intervals and lower vulnerability to atrial and ventricular tachyarrhythmias than vehicle‐treated banded hearts. Candesartan cilexetil prevented banding‐induced prolonged action potential duration and reduced the occurrence of triggered activity in LV papillary muscles. In addition, the prolonged time to 50% cell relengthening and calcium transient decay time were normalized in LV myocytes from candesartan cilexetil–treated banded rats, along with a normalization of decreased SERCA2a (sarco[endo]plasmic reticulum calcium‐ATPase) expression in LV tissues. Furthermore, candesartan cilexetil normalized depressed transient outward potassium current densities and protein and mRNA levels of both voltage‐gated potassium 4.2 and 4.3 channel subunits (Kv4.2 and Kv4.3) in banded rats. Conclusions Candesartan cilexetil protects the heart from pressure overload‐induced adverse electrical remodeling by preserving potassium channel densities. In addition, calcium handling and its molecular regulation also improved after treatment. These beneficial effects may contribute to a lower susceptibility to arrhythmias in hearts from candesartan cilexetil–treated pressure‐overloaded rats.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3