Expression of Multiple Isoforms of Nitric Oxide Synthase in Normal and Atherosclerotic Vessels

Author:

Wilcox Josiah N.1,Subramanian Romesh R.1,Sundell Cynthia L.1,Tracey W. Ross1,Pollock Jennifer S.1,Harrison David G.1,Marsden Philip A.1

Affiliation:

1. From the Department of Medicine, Emory University, Atlanta, Ga (J.N.W., R.R.S., C.L.S., D.G.H.); Abbott Laboratories, Chicago, Ill (W.R.T.); the Vascular Biology Center, Medical College of Georgia, Augusta, Ga (J.S.P.); and St Michael’s Hospital and University of Toronto, Toronto, Ontario, Canada (P.A.M.).

Abstract

Abstract Atherosclerosis is associated with reduced endothelium-derived relaxing factor bioactivity. To determine whether this is due to decreased synthesis of nitric oxide synthase (NOS), we examined normal and atherosclerotic human vessels by in situ hybridization and immunocytochemistry by using probes specific for endothelial (ecNOS), inducible (iNOS), and neuronal (nNOS) NOS isoforms. ecNOS was detected in endothelial cells overlying normal human aortas, fatty streaks, and advanced atherosclerotic lesions. A comparison of the relative expression of ecNOS to von Willebrand factor on serial sections of normal and atherosclerotic vessels indicated that there was a decrease in the number of endothelial cells expressing ecNOS in advanced lesions. iNOS and nNOS were not detected in normal vessels, but widespread production of these isoforms was found in early and advanced lesions associated with macrophages, endothelial cells, and mesenchymal-appearing intimal cells. These data suggest that there is (1) a loss of ecNOS expression by endothelial cells over advanced atherosclerotic lesions and (2) a significant increase in overall NOS synthesis by other cell types in advanced lesions composed of the ecNOS, nNOS, and iNOS isoforms. We hypothesize that the increased expression of NOS and presumably NO in atherosclerotic plaques may be related to cell death and necrosis in these tissues.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3