Identification on Human CD36 of a Domain (155-183) Implicated in Binding Oxidized Low-Density Lipoproteins (Ox-LDL)

Author:

Navazo Marta D. Puente1,Daviet Laurent1,Ninio Ewa1,McGregor John L.1

Affiliation:

1. INSERM Unit 331 (M.D.P.N., L.D., J.L.M.), Faculté de Medicine René Laënnec, Lyon, France; INSERM Unit 321 (E.N.), Hôpital de la Pitié, Paris, France; and Stanford (Calif) Medical School, Division of Hematology (J.L.M.).

Abstract

Uptake of oxidized LDL (oxLDL) by macrophages is one of the key events implicated in the initiation and perpetuation of atherosclerotic lesions. One of the major scavenging receptors, which binds modified LDL, on macrophages is CD36. The domain on CD36 implicated in the binding of oxLDL remains to be elucidated. In this study, COS cells transfected with human CD36 cDNA bound FITC-oxidized human LDL in a dose-dependent, saturable manner. This binding was inhibited by an excess of oxLDL but not by native LDL. Anti-CD36 monoclonal antibodies (mAbs) 10/5, FA6-152, and 8A6 (directed against domain 155-183), but not mAb 13/10 (directed against domain 30-76), completely inhibited oxLDL binding to human CD36-transfected COS cells. Cells transfected with a chimeric human CD36 construct (hmh 155-183), resulting from the swapping of human domain 155-183 with its murine counterpart, resulted in low binding of oxLDL. In contrast, cells transfected with a chimeric murine CD36 construct (mhm 155-183), resulting from the swapping of murine domain 155-183 with its human counterpart, resulted in high binding of oxidized human LDL. Binding of oxLDL to cells transfected by chimeric construct mhm 155-183 were only partially blocked by mAbs 10/5, FA6-152, and 8A6. In the present study we have identified, for the first time, an important functional domain (encompassing amino acids 155-183) on CD36 involved in the binding of oxLDL. In addition, the binding site for oxidized human LDL on murine CD36 seems to differ from its human counterpart.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3