Sphingolipids in Atherosclerosis and Vascular Biology

Author:

Chatterjee Subroto1

Affiliation:

1. From the Lipid Research Atherosclerosis Division, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Md.

Abstract

Abstract —Sphingolipids and their metabolic products are now known to have second-messenger functions in a variety of cellular signaling pathways. Lactosylceramide (LacCer), a glycosphingolipid (GSL) present in vascular cells such as endothelial cells, smooth muscle cells, macrophages, neutrophils, platelets, and monocytes, contributes to atherosclerosis. Large amounts of LacCer accumulate in fatty streaks, intimal plaque, and calcified intimal plaque, along with oxidized low density lipoproteins (Ox-LDLs), growth factors, and proinflammatory cytokines. A possible role for LacCer in vascular cell biology was suggested when this GSL was found to stimulate the proliferation in vitro of aortic smooth muscle cells (ASMCs). A further link of LacCer in atherosclerosis was uncovered by the finding that Ox-LDLs stimulated specifically the biosynthesis of LacCer. Ox-LDL–stimulated endogenous synthesis of LacCer by activation of UDP-Gal:GlcCer,β1-4galtransferase (GalT-2) is an early step in this signaling pathway. In turn, LacCer serves as a lipid second messenger that orchestrates a signal transduction pathway, ultimately leading to cell proliferation. This signaling pathway includes LacCer-mediated activation of NADPH oxidase that produces superoxide. Such superoxide molecules stimulate the GTP loading of p21 ras . Subsequently, the kinase cascade (Raf-1, Mek2, and p 44 MAPK [mitogen-activated protein kinase]) is activated. The phosphorylated form of p 44 MAPK translocates from the cytoplasm to the nucleus and engages in c -fos expression, proliferating cell nuclear antigen (PCNA) such as cyclin activation, and cell proliferation takes place. Interestingly, d -threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), an inhibitor of GalT-2, can abrogate the Ox-LDL–mediated activation of GalT-2, the signal kinase cascade noted above, as well as cell proliferation. Additional studies have revealed that LacCer mediates the tumor necrosis factor-α (TNF-α)–induced nuclear factor-κB expression and intercellular adhesion molecule (ICAM-1) expression in vascular endothelial cells via the redox-dependent transcriptional pathway. LacCer also stimulates the expression of CD11/CD8, or Mac-1, on the surface of human neutrophils. Collectively, this phenomenon may contribute to the adhesion of neutrophils or monocytes to the endothelial cell surface and thus initiate the process of atherosclerosis. In addition, the LacCer–mediated proliferation of ASMCs may contribute to the progression of atherosclerosis. On the other hand, programmed cell death (apoptosis) by proinflammatory cytokines such as TNF-α, interleukin-1, and high concentrations of Ox-LDL occur via activation of a cell membrane–associated neutral sphingomyelinase (N-SMase). N-SMase hydrolyzes sphingomyelin into ceramide and phosphocholine. In turn, ceramide or a homologue serves as an important stress-signaling molecule. Interestingly, an antibody against N-SMase can abrogate Ox-LDL– and TNF-α–induced apoptosis and therefore may be useful for in vivo studies of apoptosis in experimental animals. Because plaque stability is an integral aspect of atherosclerosis management, activation of N-SMase and subsequent apoptosis may be vital events in the onset of plaque rupture, stroke, or heart failure. Interestingly, in human liver cells, N-SMase action mediates the TNF-α–induced maturation of the sterol regulatory-element binding protein. Moreover, a cell-permeable ceramide can reconstitute the phenomenon above in a sterol-independent fashion. Such findings may provide new avenues for therapy for patients with atherosclerosis. The findings described here indicate an important role for sphingolipids in vascular biology and provide an exciting opportunity for further research in vascular disease and atherosclerosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Reference101 articles.

1. Thudichum JLW. Reports of the Medical Officer of Privy Council and Local Government Board . 1876;N serial No. VIII 117; 1874;N serial No. III 113.

2. Desnick R Ioannou YA Eng CM. α-Galactodase deficiency in Fabry’s disease. In: Scriver CR Beaudet Al Sly WS Valle D eds. The Metabolic and Molecular Basis of Inherited Diseases. New York NY: McGraw-Hill Inc; 1995;II:2484.

3. A specific cell surface glycoconjugate controlling cell motility: evidence by functional monoclonal antibodies that inhibit cell motility and tumor cell metastasis

4. The sphingomyelin cycle and the second messenger function of ceramide.

5. Sphingolipid metabolism and cell growth regulation

Cited by 220 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3