Extracellular Heat Shock Protein 60, Cardiac Myocytes, and Apoptosis

Author:

Kim Se-Chan1,Stice James P.1,Chen Le1,Jung James S.1,Gupta Sanjiv1,Wang Yin1,Baumgarten Georg1,Trial Joann1,Knowlton Anne A.1

Affiliation:

1. From Molecular & Cellular Cardiology (S.-C.K., J.P.S., L.C., J.S.J., S.G., Y.W., A.A.K.), University of California, Davis; Department of Anesthesiology and Intensive Care Medicine (S.-C.K., G.B.), University of Bonn, Germany; Veterans Affairs Medical Center (L.C., A.A.K.), Sacramento, Calif; Base College, Ningxia Medical University, Yinchuan, People’s Republic of China; and Department of Cardiovascular Sciences, Baylor College of Medicine (J.T.), Houston, Tex.

Abstract

Rationale: Previously, we have found that changes in the location of intracellular heat shock protein (HSP)60 are associated with apoptosis. HSP60 has been reported to be a ligand of Toll-like receptor (TLR)-4. Objective: We hypothesized that extracellular HSP60 (exHSP60) would mediate apoptosis via TLR4. Methods and Results: Adult rat cardiac myocytes were treated with HSP60, either recombinant human or with HSP60 purified from the media of injured rat cardiac myocytes. ExHSP60 induced apoptosis in cardiac myocytes, as detected by increased caspase 3 activity and increased DNA fragmentation. Apoptosis could be reduced by blocking antibodies to TLR4 and by nuclear factor κB binding decoys, but not completely inhibited, even though similar treatment blocked lipopolysaccharide-induced apoptosis. Three distinct controls showed no evidence for involvement of a ligand other than exHSP60 in the mediation of apoptosis. Conclusions: This is the first report of HSP60-induced apoptosis via the TLRs. HSP60-mediated activation of TLR4 may be a mechanism of myocyte loss in heart failure, where HSP60 has been detected in the plasma.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3