LncRNA ZFAS1 as a SERCA2a Inhibitor to Cause Intracellular Ca 2+ Overload and Contractile Dysfunction in a Mouse Model of Myocardial Infarction

Author:

Zhang Ying1,Jiao Lei1,Sun Lihua1,Li Yanru1,Gao Yuqiu1,Xu Chaoqian1,Shao Yingchun1,Li Mengmeng1,Li Chunyan1,Lu Yanjie1,Pan Zhenwei1,Xuan Lina1,Zhang Yiyuan1,Li Qingqi1,Yang Rui1,Zhuang Yuting1,Zhang Yong1,Yang Baofeng12

Affiliation:

1. From the Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Heilongjiang, China (Ying Zhang, L.J., L.S., Y. Li, Y.G., C.X., Y.S., M.L., C.L., Y. Lu, Z.P., L.X., Yiyuan Zhang, Q.L., R.Y., Y. Zhuang, Yong Zhang, B.Y.)

2. Department of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Dentistry, and Health Sciences, University of Melbourne, Australia (B.Y.).

Abstract

Rationale: Ca 2+ homeostasis—a critical determinant of cardiac contractile function—is critically regulated by SERCA2a (sarcoplasmic reticulum Ca 2+ -ATPase 2a). Our previous study has identified ZFAS1 as a new lncRNA biomarker of acute myocardial infarction (MI). Objective: To evaluate the effects of ZFAS1 on SERCA2a and the associated Ca 2+ homeostasis and cardiac contractile function in the setting of MI. Methods and Results: ZFAS1 expression was robustly increased in cytoplasm and sarcoplasmic reticulum in a mouse model of MI and a cellular model of hypoxia. Knockdown of endogenous ZFAS1 by virus-mediated silencing shRNA partially abrogated the ischemia-induced contractile dysfunction. Overexpression of ZFAS1 in otherwise normal mice created similar impairment of cardiac function as that observed in MI mice. Moreover, at the cellular level, ZFAS1 overexpression weakened the contractility of cardiac muscles. At the subcellular level, ZFAS1 deleteriously altered the Ca 2+ transient leading to intracellular Ca 2+ overload in cardiomyocytes. At the molecular level, ZFAS1 was found to directly bind SERCA2a protein and to limit its activity, as well as to repress its expression. The effects of ZFAS1 were readily reversible on knockdown of this lncRNA. Notably, a sequence domain of ZFAS1 gene that is conserved across species mimicked the effects of the full-length ZFAS1 . Mutation of this domain or application of an antisense fragment to this conserved region efficiently canceled out the deleterious actions of ZFAS1 . ZFAS1 had no significant effects on other Ca 2+ -handling regulatory proteins. Conclusions: ZFAS1 is an endogenous SERCA2a inhibitor, acting by binding to SERCA2a protein to limit its intracellular level and inhibit its activity, and a contributor to the impairment of cardiac contractile function in MI. Therefore, anti- ZFAS1 might be considered as a new therapeutic strategy for preserving SERCA2a activity and cardiac function under pathological conditions of the heart.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 142 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3