LPA 2 Contributes to Vascular Endothelium Homeostasis and Cardiac Remodeling After Myocardial Infarction

Author:

Pei Jianqiu12,Cai Lin13ORCID,Wang Fang4,Xu Chuansheng1,Pei Shengqiang1,Guo Hongwei5,Sun Xiaogang5,Chun Jerold6,Cong Xiangfeng14,Zhu Weiquan7ORCID,Zheng Zhe152ORCID,Chen Xi4ORCID

Affiliation:

1. State Key Laboratory of Cardiovascular Disease (J.P., L.C., C.X., S.P., X.C., Z.Z.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

2. National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China (J.P., Z.Z.).

3. State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China (L.C.).

4. State Key Laboratory of Cardiovascular Disease, Center of Laboratory Medicine (F.W., X. Cong, X. Chen), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

5. Department of Cardiovascular Surgery (H.G., X.S., Z.Z.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

6. Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (J.C.).

7. Department of Medicine, Program in Molecular Medicine, Department of Internal Medicine, Division of Cardiovascular Medicine, Department of Pathology, University of Utah, Salt Lake City (W.Z.).

Abstract

Rationale: Myocardial infarction (MI) is one of the most dangerous adverse cardiovascular events. Our previous study found that lysophosphatidic acid (LPA) is increased in human peripheral blood after MI, and LPA has a protective effect on the survival and proliferation of various cell types. However, the role of LPA and its receptors in MI is less understood. Objectives: To study the unknown role of LPA and its receptors in heart during MI. Methods and Results: In this study, we found that mice also had elevated LPA level in peripheral blood, as well as increased cardiac expression of its receptor LPA 2 in the early stages after MI. With adult and neonate MI models in global Lpar2 knockout ( Lpar2 -KO) mice, we found Lpar2 deficiency increased vascular leak leading to disruption of its homeostasis, so as to impaired heart function and increased early mortality. Histological examination revealed larger scar size, increased fibrosis, and reduced vascular density in the heart of Lpar2 -KO mice. Furthermore, Lpar2 -KO also attenuated blood flow recovery after femoral artery ligation with decreased vascular density in gastrocnemius. Our study revealed that Lpar2 was mainly expressed and altered in cardiac endothelial cells during MI, and use of endothelial-specific Lpar2 knockout mice phenocopied the global knockout mice. Additionally, adenovirus- Lpar2 and pharmacologically activated LPA 2 significantly improved heart function, reduced scar size, increased vascular formation, and alleviated early mortality by maintaining vascular homeostasis owing to protecting vessels from leakage. Mechanistic studies demonstrated that LPA-LPA 2 signaling could promote endothelial cell proliferation through PI3K-Akt/PLC-Raf1-Erk pathway and enhanced endothelial cell tube formation via PKD1-CD36 signaling. Conclusions: Our results indicate that endothelial LPA-LPA 2 signaling promotes angiogenesis and maintains vascular homeostasis, which is vital for restoring blood flow and repairing tissue function in ischemic injuries. Targeting LPA-LPA 2 signal might have clinical therapeutic potential to protect the heart from ischemic injury.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3