Diabetes-induced Coronary Vascular Dysfunction Involves Increased Arginase Activity

Author:

Romero Maritza J.1,Platt Daniel H.1,Tawfik Huda E.1,Labazi Mohamed1,El-Remessy Azza B.1,Bartoli Manuela1,Caldwell Ruth B.1,Caldwell Robert W.1

Affiliation:

1. From the Department of Pharmacology & Toxicology (M.J.R., D.H.P., H.E.T., A.B.E.-R., R.W.C.), Vascular Biology Center (M.L., M.B., R.B.C.), and Department of Cellular Biology and Anatomy (R.B.C.), Medical College of Georgia, Augusta. A.B.E.-R. is currently at the College of Pharmacy, University of Georgia, Augusta. M.B. is currently at the Department of Ophthalmology, University of South Carolina School of Medicine, Columbia.

Abstract

Increases in arginase activity have been reported in a variety of disease conditions characterized by vascular dysfunction. Arginase competes with NO synthase for their common substrate arginine, suggesting a cause and effect relationship. We tested this concept by experiments with streptozotocin diabetic rats and high glucose (HG)-treated bovine coronary endothelial cells (BCECs). Our studies showed that diabetes-induced impairment of vasorelaxation to acetylcholine was correlated with increases in reactive oxygen species and arginase activity and arginase I expression in aorta and liver. Treatment of diabetic rats with simvastatin (5 mg/kg per day, subcutaneously) or l -citrulline (50 mg/kg per day, orally) blunted these effects. Acute treatment of diabetic coronary arteries with arginase inhibitors also reversed the impaired vasodilation to acetylcholine. Treatment of BCECs with HG (25 mmol/L, 24 hours) also increased arginase activity. This effect was blocked by treatment with simvastatin (0.1 μmol/L), the Rho kinase inhibitor Y-27632 (10 μmol/L), or l -citrulline (1 mmol/L). Superoxide and active RhoA levels also were elevated in HG-treated BCECs. Furthermore, HG significantly diminished NO production in BCECs. Transfection of BCECs with arginase I small interfering RNA prevented the rise in arginase activity in HG-treated cells and normalized NO production, suggesting a role for arginase I in reduced NO production with HG. These results indicate that increased arginase activity in diabetes contributes to vascular endothelial dysfunction by decreasing l -arginine availability to NO synthase.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3