Endoplasmic Reticulum Stress in the Heart

Author:

Glembotski Christopher C.1

Affiliation:

1. From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, Calif.

Abstract

Over the last decade, it has become clear that the accumulation of misfolded proteins contributes to a number of neurodegenerative, immune, and endocrine pathologies, as well as other age-related illnesses. Recent interest has focused on the possibility that the accumulation of misfolded proteins can also contribute to vascular and cardiac diseases. In large part, the misfolding of proteins takes place during synthesis on free ribosomes in the cytoplasm or on endoplasmic reticulum ribosomes. In fact, even under optimal conditions, ≈30% of all newly synthesized proteins are rapidly degraded, most likely because of improper folding. Accordingly, stresses that perturb the folding of proteins during or soon after synthesis can lead to the accumulation of misfolded proteins and to potential cellular dysfunction and pathological consequences. To avert such outcomes, cells have developed elaborate protein quality-control systems for detecting misfolded proteins and making appropriate adjustments to the machinery responsible for protein synthesis and/or degradation. Important contributors to protein quality control include cytosolic and organelle-targeted molecular chaperones, which help fold and stabilize proteins from unfolding, and the ubiquitin proteasome system, which degrades terminally misfolded proteins. Both of these systems play important roles in cardiovascular biology. The focus of this review is the endoplasmic reticulum stress response, a protein quality-control and signal-transduction system that has not been well studied in the context of cardiovascular biology but that could be important for vascular and cardiac health and disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference114 articles.

1. Deleted in proof.

2. Deleted in proof.

3. Deleted in proof.

4. Deleted in proof.

5. Deleted in proof.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3