Transdifferentiation of Vascular Smooth Muscle Cells to Macrophage-Like Cells During Atherogenesis

Author:

Feil Susanne1,Fehrenbacher Birgit1,Lukowski Robert1,Essmann Frank1,Schulze-Osthoff Klaus1,Schaller Martin1,Feil Robert1

Affiliation:

1. From the Interfakultäres Institut für Biochemie (S.F., F.E., K.S.-O., R.F.), Department of Dermatology (B.F., M.S.), and Pharmakologie, Toxikologie und Klinische Pharmazie (R.L.), University of Tübingen, Tübingen, Germany.

Abstract

Rationale: Atherosclerosis is a widespread and devastating disease, but the origins of cells within atherosclerotic plaques are not well defined. Objective: To investigate the specific contribution of vascular smooth muscle cells (SMCs) to atherosclerotic plaque formation by genetic inducible fate mapping in mice. Methods and Results: Vascular SMCs were genetically pulse-labeled using the tamoxifen-dependent Cre recombinase, CreER T2 , expressed from the endogenous SM22α locus combined with Cre-activatable reporter genes that were integrated into the ROSA26 locus. Mature SMCs in the arterial media were labeled by tamoxifen treatment of young apolipoprotein E–deficient mice before the development of atherosclerosis and then their fate was monitored in older atherosclerotic animals. We found that medial SMCs can undergo clonal expansion and convert to macrophage-like cells that have lost classic SMC marker expression and make up a major component of advanced atherosclerotic lesions. Conclusions: This study provides strong in vivo evidence for smooth muscle-to-macrophage transdifferentiation and supports an important role of SMC plasticity in atherogenesis. Targeting this type of SMC phenotypic conversion might be a novel strategy for the treatment of atherosclerosis, as well as other diseases with a smooth muscle component.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3