Platelets Play Differential Role During the Initiation and Progression of Autoimmune Neuroinflammation

Author:

Starossom Sarah C.1,Veremeyko Tatyana1,Yung Amanda W.Y.1,Dukhinova Marina1,Au Cheryl1,Lau Alexander Y.1,Weiner Howard L.1,Ponomarev Eugene D.1

Affiliation:

1. From the Center for Neurologic Diseases, Brigham and Women’s Hospital, Department of Neurology, Harvard Medical School, Boston, MA (S.C.S., H.L.W., E.D.P.); Institute for Medical Immunology and NeuroCure, Department of Experimental Neuroimmunology, Charité - Universitätsmedizin Berlin, Berlin, Germany (S.C.S.); and School of Biomedical Sciences, Faculty of Medicine (T.V., A.W.Y.Y., M.D., E.D.P.) and Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital (C.A., A.Y.L...

Abstract

Rationale : Platelets are known to participate in vascular pathologies; however, their role in neuroinflammatory diseases, such as multiple sclerosis (MS), is unknown. Autoimmune CD4 T cells have been the main focus of studies of MS, although the factors that regulate T-cell differentiation toward pathogenic T helper-1/T helper-17 phenotypes are not completely understood. Objective : We investigated the role of platelets in the modulation of CD4 T-cell functions in patients with MS and in mice with experimental autoimmune encephalitis, an animal model for MS. Methods and Results : We found that early in MS and experimental autoimmune encephalitis, platelets degranulated and produced soluble factors serotonin (5-hydroxytryptamine), platelet factor 4, and platelet-activating factor, which specifically stimulated differentiation of T cells toward pathogenic T helper-1, T helper-17, and interferon-γ/interleukin-17–producing CD4 T cells. At the later stages of MS and experimental autoimmune encephalitis, platelets became exhausted in their ability to produce proinflammatory factors and stimulate CD4 T cells but substantially increased their ability to form aggregates with CD4 T cells. Formation of platelet–CD4 T-cell aggregates involved the interaction of CD62P on activated platelets with adhesion molecule CD166 on activated CD4 T cells, contributing to downmodulation of CD4 T-cell activation, proliferation, and production of interferon-γ. Blocking of formation of platelet–CD4 T-cell aggregates during progression of experimental autoimmune encephalitis substantially enhanced proliferation of CD4 T cells in the central nervous system and the periphery leading to exacerbation of the disease. Conclusion : Our study indicates differential roles for platelets in the regulation of functions of pathogenic CD4 T cells during initiation and progression of central nervous system autoimmune inflammation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3