Notch and Vascular Smooth Muscle Cell Phenotype

Author:

Morrow David1,Guha Shaunta1,Sweeney Catherine1,Birney Yvonne1,Walshe Tony1,O’Brien Colm1,Walls Dermot1,Redmond Eileen M.1,Cahill Paul A.1

Affiliation:

1. From the Vascular Health Research Centre (D.M., S.G., C.S., Y.B., T.W., P.A.C.), Faculty of Science and Health; and School of Biotechnology (D.W.), National Centre for Sensor Research, Dublin City University, Ireland; Department of Surgery (D.M., E.M.R.), University of Rochester, NY; Schepens Eye Research Institute (T.W.), Harvard Medical School, Boston, Mass; and Mater Misericordiae Hospital (C.O.), Institute of Ophthalmology, The Conway Institute of Biomolecular and Biomedical Research, Dublin,...

Abstract

The Notch signaling pathway is critical for cell fate determination during embryonic development, including many aspects of vascular development. An emerging paradigm suggests that the Notch gene regulatory network is often recapitulated in the context of phenotypic modulation of vascular smooth muscle cells (VSMC), vascular remodeling, and repair in adult vascular disease following injury. Notch ligand receptor interactions lead to cleavage of receptor, translocation of the intracellular receptor (Notch IC), activation of transcriptional CBF-1/RBP-Jκ–dependent and –independent pathways, and transduction of downstream Notch target gene expression. Hereditary mutations of Notch components are associated with congenital defects of the cardiovascular system in humans such as Alagille syndrome and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Recent loss- or gain-of-function studies have provided insight into novel Notch-mediated CBF-1/RBP-Jκ–dependent and –independent signaling and cross-regulation to other molecules that may play a critical role in VSMC phenotypic switching. Notch receptors are critical for controlling VSMC differentiation and dictating the phenotypic response following vascular injury through interaction with a triad of transcription factors that act synergistically to regulate VSMC differentiation. This review focuses on the role of Notch receptor ligand interactions in dictating VSMC behavior and phenotype and presents recent findings on the molecular interactions between the Notch components and VSMC-specific genes to further understand the function of Notch signaling in vascular tissue and disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3