SIRT6 Protects Smooth Muscle Cells From Senescence and Reduces Atherosclerosis

Author:

Grootaert Mandy O.J.1ORCID,Finigan Alison1,Figg Nichola L.1,Uryga Anna K.1,Bennett Martin R.1ORCID

Affiliation:

1. Division of Cardiovascular Medicine, University of Cambridge, United Kingdom.

Abstract

Rationale: Vascular smooth muscle cell (VSMC) senescence promotes atherosclerosis and features of plaque instability, in part, through lipid-mediated oxidative DNA damage and telomere dysfunction. SIRT6 (Sirtuin 6) is a nuclear deacetylase involved in DNA damage response signaling, inflammation, and metabolism; however, its role in regulating VSMC senescence and atherosclerosis is unclear. Objective: We examined SIRT6 expression in human VSMCs, the role, regulation, and downstream pathways activated by SIRT6, and how VSMC SIRT6 regulates atherogenesis. Methods and Results: SIRT6 protein, but not mRNA, expression was markedly reduced in VSMCs in human and mouse atherosclerotic plaques, and in human VSMCs derived from plaques or undergoing replicative or palmitate-induced senescence versus healthy aortic VSMCs. The ubiquitin ligase CHIP (C terminus of HSC70-interacting protein) promoted SIRT6 stability, but CHIP expression was reduced in human and mouse plaque VSMCs and by palmitate in a p38- and c-Jun N-terminal kinase-dependent manner. SIRT6 bound to telomeres, while SIRT6 inhibition using shRNA or a deacetylase-inactive mutant (SIRT6 H133Y ) shortened human VSMC lifespan and induced senescence, associated with telomeric H3K9 (histone H3 lysine 9) hyperacetylation and 53BP1 (p53 binding protein 1) binding, indicative of telomere damage. In contrast, SIRT6 overexpression preserved telomere integrity, delayed cellular senescence, and reduced inflammatory cytokine expression and changes in VSMC metabolism associated with senescence. SIRT6, but not SIRT6 H133Y , promoted proliferation and lifespan of mouse VSMCs, and prevented senescence-associated metabolic changes. ApoE −/− (apolipoprotein E) mice were generated that overexpress SIRT6 or SIRT6 H133Y in VSMCs only. SM22α-hSIRT6/ApoE −/− mice had reduced atherosclerosis, markers of senescence and inflammation compared with littermate controls, while plaques of SM22α-hSIRT6 H133Y /ApoE −/− mice showed increased features of plaque instability. Conclusions: SIRT6 protein expression is reduced in human and mouse plaque VSMCs and is positively regulated by CHIP. SIRT6 regulates telomere maintenance and VSMC lifespan and inhibits atherogenesis, all dependent on its deacetylase activity. Our data show that endogenous SIRT6 deacetylase is an important and unrecognized inhibitor of VSMC senescence and atherosclerosis.

Funder

British Heart Foundation

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3