ADAMTS8 Promotes the Development of Pulmonary Arterial Hypertension and Right Ventricular Failure

Author:

Omura Junichi1,Satoh Kimio1,Kikuchi Nobuhiro1,Satoh Taijyu1,Kurosawa Ryo1,Nogi Masamichi1,Ohtsuki Tomohiro1,Al-Mamun Md Elias1,Siddique Mohammad Abdul Hai1,Yaoita Nobuhiro1,Sunamura Shinichiro1,Miyata Satoshi1,Hoshikawa Yasushi2,Okada Yoshinori3,Shimokawa Hiroaki1

Affiliation:

1. From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)

2. Department of Thoracic Surgery, Fujita Health University School of Medicine, Toyoake, Japan (Y.H.)

3. Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan (Y.O.).

Abstract

Rationale: Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling with aberrant pulmonary artery smooth muscle cells (PASMCs) proliferation, endothelial dysfunction, and extracellular matrix remodeling. Objective: Right ventricular (RV) failure is an important prognostic factor in PAH. Thus, we need to elucidate a novel therapeutic target in both PAH and RV failure. Methods and Results: We performed microarray analysis in PASMCs from patients with PAH (PAH-PASMCs) and controls. We found a ADAMTS8 (disintegrin and metalloproteinase with thrombospondin motifs 8), a secreted protein specifically expressed in the lung and the heart, was upregulated in PAH-PASMCs and the lung in hypoxia-induced pulmonary hypertension (PH) in mice. To elucidate the role of ADAMTS8 in PH, we used vascular smooth muscle cell-specific ADAMTS8-knockout mice (ADAMTS ΔSM22 ). Hypoxia-induced PH was attenuated in ADAMTS ΔSM22 mice compared with controls. ADAMTS8 overexpression increased PASMC proliferation with downregulation of AMPK (AMP-activated protein kinase). In contrast, deletion of ADAMTS8 reduced PASMC proliferation with AMPK upregulation. Moreover, deletion of ADAMTS8 reduced mitochondrial fragmentation under hypoxia in vivo and in vitro. Indeed, PASMCs harvested from ADAMTS ΔSM22 mice demonstrated that phosphorylated DRP-1 (dynamin-related protein 1) at Ser637 was significantly upregulated with higher expression of profusion genes (Mfn1 and Mfn2) and improved mitochondrial function. Moreover, recombinant ADAMTS8 induced endothelial dysfunction and matrix metalloproteinase activation in an autocrine/paracrine manner. Next, to elucidate the role of ADAMTS8 in RV function, we developed a cardiomyocyte-specific ADAMTS8 knockout mice (ADAMTS8 ΔαMHC ). ADAMTS8 ΔαMHC mice showed ameliorated RV failure in response to chronic hypoxia. In addition, ADAMTS8 ΔαMHC mice showed enhanced angiogenesis and reduced RV ischemia and fibrosis. Finally, high-throughput screening revealed that mebendazole, which is used for treatment of parasite infections, reduced ADAMTS8 expression and cell proliferation in PAH-PASMCs and ameliorated PH and RV failure in PH rodent models. Conclusions: These results indicate that ADAMTS8 is a novel therapeutic target in PAH.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3