Ogg1 -Dependent DNA Repair Regulates NLRP3 Inflammasome and Prevents Atherosclerosis

Author:

Tumurkhuu Gantsetseg1,Shimada Kenichi1,Dagvadorj Jargalsaikhan1,Crother Timothy R.1,Zhang Wenxuan1,Luthringer Daniel1,Gottlieb Roberta A.1,Chen Shuang1,Arditi Moshe1

Affiliation:

1. From the Departments of Pediatrics, Biomedical Sciences, and Infectious and Immunologic Diseases Research Center (IIDRC) (G.T., K.S., J.D., T.R.C., W.Z., S.C.), Department of Pathology (D.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Medicine, Barbra Streisand Women’s Heart Center, Heart Institute of Cedars-Sinai (R.A.G.), Cedars-Sinai Medical Center, Los Angeles, CA; and David Geffen School of Medicine, University of California, Los Angeles (M.A.).

Abstract

Rationale: Activation of NLRP3 (nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3) inflammasome-mediating interleukin (IL)-1β secretion has emerged as an important component of inflammatory processes in atherosclerosis. Mitochondrial DNA (mtDNA) damage is detrimental in atherosclerosis, and mitochondria are central regulators of the nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3 inflammasome. Human atherosclerotic plaques express increased mtDNA damage. The major DNA glycosylase, 8-oxoguanine glycosylase (OGG1), is responsible for removing the most abundant form of oxidative DNA damage. Objective: To test the role of OGG1 in the development of atherosclerosis in mouse. Methods and Results: We observed that Ogg1 expression decreases over time in atherosclerotic lesion macrophages of low-density lipoprotein receptor ( Ldlr ) knockout mice fed a Western diet. Ogg1 −/− Ldlr −/− mice fed a Western diet resulted in an increase in plaque size and lipid content. We found increased oxidized mtDNA, inflammasome activation, and apoptosis in atherosclerotic lesions and also higher serum IL-1β and IL-18 in Ogg1 −/− Ldlr −/− mice than in Ldlr −/− . Transplantation with Ogg1 −/− bone marrow into Ldlr −/− mice led to larger atherosclerotic lesions and increased IL-1β production. However, transplantation of Ogg1 −/− Nlrp3 −/− bone marrow reversed the Ogg1 −/− phenotype of increased plaque size. Ogg1 −/− macrophages showed increased oxidized mtDNA and had greater amounts of cytosolic mtDNA and cytochrome c , increased apoptosis, and more IL-1β secretion. Finally, we found that proatherogenic miR-33 can directly inhibit human OGG1 expression and indirectly suppress both mouse and human OGG1 via AMP-activated protein kinase. Conclusions: OGG1 plays a protective role in atherogenesis by preventing excessive inflammasome activation. Our study provides insight into a new target for therapeutic intervention based on a link between oxidative mtDNA damage, OGG1, and atherosclerosis via NLRP3 inflammasome.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3