Inhibition of KLF5–Myo9b–RhoA Pathway–Mediated Podosome Formation in Macrophages Ameliorates Abdominal Aortic Aneurysm

Author:

Ma Dong1,Zheng Bin1,Suzuki Toru1,Zhang Ruonan1,Jiang Chunyang1,Bai Disi1,Yin Weina1,Yang Zhan1,Zhang Xinhua1,Hou Lianguo1,Zhan Hong1,Wen Jin-kun1

Affiliation:

1. From the Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, China (D.M., B.Z., R.Z., C.J., D.B., W.Y., Z.Y., X.Z., L.H., J.-k.W.); School of Public Health, North China University of Science and Technology, China (D.M., D.B.); Department of Cardiovascular Sciences, University of Leicester, UK (T.S.); Department of Thoracic Surgery, Tianjin Union Medicine Centre, China (C.J.); Department of...

Abstract

Rationale: Abdominal aortic aneurysms (AAAs) are characterized by pathological remodeling of the aortic wall. Although both increased Krüppel-like factor 5 (KLF5) expression and macrophage infiltration have been implicated in vascular remodeling, the role of KLF5 in macrophage infiltration and AAA formation remains unclear. Objective: To determine the role of KLF5 in AAA formation and macrophage infiltration into AAAs. Methods and Results: KLF5 expression was significantly increased in human AAA tissues and in 2 mouse models of experimental AAA. Moreover, in myeloid-specific Klf5 knockout mice (myeKlf5 −/− mice), macrophage infiltration, medial smooth muscle cell loss, elastin degradation, and AAA formation were markedly decreased. In cell migration and time-lapse imaging analyses, the migration of murine myeKlf5 −/− macrophages was impaired, and in luciferase reporter assays, KLF5 activated Myo9b (myosin IXB) transcription by direct binding to the Myo9b promoter. In subsequent coimmunostaining studies, Myo9b was colocalized with filamentous actin, cortactin, vinculin, and Tks5 in the podosomes of phorbol 12,13-dibutyrate–treated macrophages, indicating that Myo9b participates in podosome formation. Gain- and loss-of-function experiments showed that KLF5 promoted podosome formation in macrophages by upregulating Myo9b expression. Furthermore, RhoA-GTP levels increased after KLF5 knockdown in macrophages, suggesting that KLF5 lies upstream of RhoA signaling. Finally, Myo9b expression was increased in human AAA tissues, located in macrophages, and positively correlated with AAA size. Conclusions: These data are the first to indicate that KLF5-dependent regulation of Myo9b/RhoA is required for podosome formation and macrophage migration during AAA formation, warranting consideration of the KLF5–Myo9b–RhoA pathway as a therapeutic target for AAA treatment.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3