miR-15 Family Regulates Postnatal Mitotic Arrest of Cardiomyocytes

Author:

Porrello Enzo R.1,Johnson Brett A.1,Aurora Arin B.1,Simpson Emma1,Nam Young-Jae1,Matkovich Scot J.1,Dorn Gerald W.1,van Rooij Eva1,Olson Eric N.1

Affiliation:

1. From the Department of Molecular Biology (E.R.P., B.A.J., A.B.A., Y.-J.N., E.N.O.) and Department of Pathology (E.S.), University of Texas Southwestern Medical Center, Dallas, TX; Washington University Center for Pharmacogenomics (S.J.M., G.W.D.), St Louis, MO; and MiRagen Therapeutics (E.v.R.), Boulder, CO.

Abstract

Rationale: Mammalian cardiomyocytes withdraw from the cell cycle during early postnatal development, which significantly limits the capacity of the adult mammalian heart to regenerate after injury. The regulatory mechanisms that govern cardiomyocyte cell cycle withdrawal and binucleation are poorly understood. Objective: Given the potential of microRNAs (miRNAs) to influence large gene networks and modify complex developmental and disease phenotypes, we searched for miRNAs that were regulated during the postnatal switch to terminal differentiation. Methods and Results: Microarray analysis revealed subsets of miRNAs that were upregulated or downregulated in cardiac ventricles from mice at 1 and 10 days of age (P1 and P10). Interestingly, miR-195 (a member of the miR-15 family) was the most highly upregulated miRNA during this period, with expression levels almost 6-fold higher in P10 ventricles relative to P1. Precocious overexpression of miR-195 in the embryonic heart was associated with ventricular hypoplasia and ventricular septal defects in β-myosin heavy chain–miR-195 transgenic mice. Using global gene profiling and argonaute-2 immunoprecipitation approaches, we showed that miR-195 regulates the expression of a number of cell cycle genes, including checkpoint kinase 1 (Chek1), which we identified as a highly conserved direct target of miR-195. Finally, we demonstrated that knockdown of the miR-15 family in neonatal mice with locked nucleic acid–modified anti-miRNAs was associated with an increased number of mitotic cardiomyocytes and derepression of Chek1. Conclusions: These findings suggest that upregulation of the miR-15 family during the neonatal period may be an important regulatory mechanism governing cardiomyocyte cell cycle withdrawal and binucleation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3