Personalized Digital-Heart Technology for Ventricular Tachycardia Ablation Targeting in Hearts With Infiltrating Adiposity

Author:

Sung Eric12,Prakosa Adityo12,Aronis Konstantinos N.23ORCID,Zhou Shijie12ORCID,Zimmerman Stefan L.24ORCID,Tandri Harikrishna23,Nazarian Saman5,Berger Ronald D.23ORCID,Chrispin Jonathan23ORCID,Trayanova Natalia A.12

Affiliation:

1. Department of Biomedical Engineering (E.S., A.P., S.Z., N.A.T.), Johns Hopkins University, Baltimore, MD.

2. Alliance for Cardiovascular Diagnostic and Treatment Innovation (E.S., A.P., K.N.A., S.Z., S.L.Z., H.T., R.D.B., J.C., N.A.T.), Johns Hopkins University, Baltimore, MD.

3. Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine (K.N.A., H.T., R.D.B., J.C.), Johns Hopkins Hospital, Baltimore, MD.

4. Department of Radiological Sciences (S.L.Z.), Johns Hopkins Hospital, Baltimore, MD.

5. Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (S.N.).

Abstract

Background: Infiltrating adipose tissue (inFAT) is a newly recognized proarrhythmic substrate for postinfarct ventricular tachycardias (VT) identifiable on contrast-enhanced computed tomography. This study presents novel digital-heart technology that incorporates inFAT from contrast-enhanced computed tomography to noninvasively predict VT ablation targets and assesses the capability of the technology by comparing its predictions with VT ablation procedure data from patients with ischemic cardiomyopathy. Methods: Digital-heart models reflecting patient-specific inFAT distributions were reconstructed from contrast-enhanced computed tomography. The digital-heart identification of fat-based ablation targeting (DIFAT) technology evaluated the rapid-pacing–induced VTs in each personalized inFAT-based substrate. DIFAT targets that render the inFAT substrate noninducible to VT, including VTs that arise postablation, were determined. DIFAT predictions were compared with corresponding clinical ablations to assess the capabilities of the technology. Results: DIFAT was developed and applied retrospectively to 29 ischemic cardiomyopathy patients with contrast-enhanced computed tomography. DIFAT ablation volumes were significantly less than the estimated clinical ablation volumes (1.87±0.35 versus 7.05±0.88 cm 3 , P <0.0005). DIFAT targets overlapped with clinical ablations in 79% of patients, mostly in the apex (72%) and inferior/inferolateral (74%). In 3 patients, DIFAT targets colocalized with redo ablations delivered years after the index procedure. Conclusions: DIFAT is a novel digital-heart technology for individualized VT ablation guidance designed to eliminate VT inducibility following initial ablation. DIFAT predictions colocalized well with clinical ablation locations but provided significantly smaller lesions. DIFAT also predicted VTs targeted in redo procedures years later. As DIFAT uses widely accessible computed tomography, its integration into clinical workflows may augment therapeutic precision and reduce redo procedures.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3