Hypochlorous Acid Impairs Endothelium-Derived Nitric Oxide Bioactivity Through a Superoxide-Dependent Mechanism

Author:

Stocker Roland1,Huang Annong1,Jeranian Erin1,Hou Jing Yun1,Wu Tina T.1,Thomas Shane R.1,Keaney John F.1

Affiliation:

1. From the Evans Memorial Department of Medicine and Whitaker Cardiovascular Institute (R.S., A.H., E.J., T.W., S.R.T., J.F.K.), Boston University School of Medicine, Mass; the Centre for Vascular Research (R.S., J.Y.H., S.R.T.), University of New South Wales, Sydney; and the Department of Haematology (R.S., J.Y.H., S.R.T.), Prince of Wales Hospital, Randwick, Australia.

Abstract

Objective— To determine how hypochlorous acid (HOCl), the principal product of myeloperoxidase, modulates vascular function. Methods and Results— Rabbit arterial rings exposed to HOCl (0 to 500 μmol/L) exhibited dose- and time-dependent impairment of endothelium-dependent arterial relaxation to acetylcholine and A23187, but not the NO donor, diethylamine NONOate, suggesting that HOCl targets the endothelium. This effect was not because of cytotoxicity, as HOCl treatment produced no significant change in endothelial cell morphology or lactate dehydrogenase release. We observed HOCl-mediated endothelial cell protein oxidation by immunoreactivity to HOP-1, a monoclonal antibody specific for HOCl-oxidized protein. In support of this notion, known HOCl scavengers, such as methionine and N -acetylcysteine, partially preserved endothelium-derived NO bioactivity in response to HOCl. In an unanticipated observation, HOCl-mediated impairment of NO bioactivity was prevented by manganese superoxide dismutase in a manner dependent on its enzymatic activity. Finally, we found that HOCl reduced endothelial nitric oxide synthase dimer stability, an effect that was also inhibited by superoxide dismutase. Conclusions— Taken together, these data indicate that HOCl imparts a defect in endothelial NO production due to a superoxide-dependent reduction in endothelial nitric oxide synthase dimer stability. These data provide another mechanism whereby myeloperoxidase-derived oxidants can contribute to the impairment of NO bioactivity that is characteristic of atherosclerosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3