Apolipoprotein E and Lipoprotein Lipase Increase Triglyceride-Rich Particle Binding but Decrease Particle Penetration in Arterial Wall

Author:

Mullick Adam E.1,Deckelbaum Richard J.1,Goldberg Ira J.1,Al-Haideri Maysoon1,Rutledge John C.1

Affiliation:

1. From the Divisions of Endocrinology, Clinical Nutrition, and Vascular Medicine (A.E.M., J.C.R.), University of California, Davis, and the Departments of Medicine and Pediatrics (R.J.D., I.J.G., M.A.-H.), Columbia University College of Physicians and Surgeons, New York, NY.

Abstract

Objective— Liver-derived apolipoprotein E (apoE) decreases atherosclerosis without altering the circulating concentrations of plasma lipoproteins. We evaluated the effects of apoE and lipoprotein lipase (LpL) on the interactions of triglyceride-rich particles (TGRPs) in the arterial wall. Methods and Results— Quantitative fluorescence microscopy was used to study the interactions of TGRPs (25- to 35-nm diameter) in the arterial wall. Carotid arteries were harvested from rats, placed in a perfusion chamber, and perfused with fluorescently labeled TGRPs. In the absence of apoE or LpL, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine-TGRP (100 μg neutral lipid/mL) was poorly retained in the arterial wall. The addition of either apoE (10 μg/mL) or LpL (10 μg/mL) increased TGRP accumulation 220% and 100%, respectively. This effect was attenuated by heparin (10.0 IU/mL). Histological analyses of cross sections from these vessels demonstrate that in the absence of apoE or LpL, there is deep penetration of lipid into the arterial wall. With the addition of either apoE or LpL, arterial wall penetration of TGRP is blocked. Conclusions— These results demonstrate that although apoE and LpL increase arterial wall accumulation of TGRPs, these proteins also reduce the penetration of TGRPs into the arterial wall. We postulate that this may represent a novel antiatherogenic property of apoE and LpL.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3