Thymidine Phosphorylase Deficiency or Inhibition Preserves Cardiac Function in Mice With Acute Myocardial Infarction

Author:

Du Lili12ORCID,Yue Hong1ORCID,Rorabaugh Boyd R.13ORCID,Li Oliver Q. Y.1,DeHart Autumn R.1ORCID,Toloza‐Alvarez Gretel1ORCID,Hong Liang1,Denvir James1,Thompson Ellen4ORCID,Li Wei1ORCID

Affiliation:

1. Department of Biomedical Sciences Joan C. Edwards School of Medicine at Marshall University Huntington WV USA

2. Department of Pathophysiology College of Basic Medical Science, China Medical University Shenyang Liaoning China

3. Department of Pharmaceutical Sciences School of Pharmacy at Marshall University Huntington WV USA

4. Department of Medicine Joan C. Edwards School of Medicine at Marshall University Huntington WV USA

Abstract

Background Ischemic cardiovascular disease is the leading cause of death worldwide. Current pharmacologic therapy has multiple limitations, and patients remain symptomatic despite maximal medical therapies. Deficiency or inhibition of thymidine phosphorylase (TYMP) in mice reduces thrombosis, suggesting that TYMP could be a novel therapeutic target for patients with acute myocardial infarction (AMI). Methods and Results A mouse AMI model was established by ligation of the left anterior descending coronary artery in C57BL/6J wild‐type and TYMP‐deficient ( Tymp −/− ) mice. Cardiac function was monitored by echocardiography or Langendorff assay. TYMP‐deficient hearts had lower baseline contractility. However, cardiac function, systolic left ventricle anterior wall thickness, and diastolic wall strain were significantly greater 4 weeks after AMI compared with wild‐type hearts. TYMP deficiency reduced microthrombus formation after AMI. TYMP deficiency did not affect angiogenesis in either normal or infarcted myocardium but increased arteriogenesis post‐AMI. TYMP deficiency enhanced the mobilization of bone marrow stem cells and promoted mesenchymal stem cell (MSC) proliferation, migration, and resistance to inflammation and hypoxia. TYMP deficiency increased the number of larger MSCs and decreased matrix metalloproteinase‐2 expression, resulting in a high homing capability. TYMP deficiency induced constitutive AKT phosphorylation in MSCs but reduced expression of genes associated with retinoid‐interferon‐induced mortality‐19, a molecule that enhances cell death. Inhibition of TYMP with its selective inhibitor, tipiracil, phenocopied TYMP deficiency, improved post‐AMI cardiac function and systolic left ventricle anterior wall thickness, attenuated diastolic stiffness, and reduced infarct size. Conclusions This study demonstrated that TYMP plays an adverse role after AMI. Targeting TYMP may be a novel therapy for patients with AMI.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3