Effects of Age on Brain Activation During Auditory-Cued Thumb-to-Index Opposition

Author:

Calautti C.1,Serrati C.1,Baron J-C.1

Affiliation:

1. From INSERM U320, Caen, France (C.C., J-C.B.), and Dipartimento di Scienze Neurologiche e Riabilitazione, Università di Genova (Italy) (C.S.).

Abstract

Background and Purpose —Available data indicate a decline in fine finger movements with aging, suggesting changes in central motor processes. Thus far no functional neuroimaging study has assessed the effect of age on activation patterns during finger movement. Methods —We used high-resolution perfusion positron emission tomography to study 2 groups of 7 healthy right-handed subjects each: a young group (mean age, 24 years) and an old group (mean age, 60 years). The task was a thumb-to-index tapping, auditory-cued at 1.26 Hz with a metronome, with either the right or the left hand. The control condition was a resting state with the metronome on. Results —Significant differences between old and young subjects were found, suggesting significant overactivation in older subjects affecting the superior frontal cortex (premotor-prefrontal junction) ipsilateral to the moving fingers, as if the execution of this apparently simple motor task was judged more complex by the aged brain. Similar findings in previous perceptual and cognitive paradigms have been interpreted as a compensation process for the neurobiological changes of aging. Analysis of the control condition data in our sample showed, however, that this prefrontal overactivation in the old group was due at least in part to higher resting perfusion in anterior brain areas in the young subjects. Conclusions —The changes in brain function observed in this study may underlie the subtle decline in fine motor functions known to occur with normal aging. Our findings emphasize the importance of using an age-matched control group in functional imaging studies of motor recovery after stroke.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3