Blood-Brain Barrier Disruption By Low-Frequency Ultrasound

Author:

Reinhard Matthias1,Hetzel Andreas1,Krüger Sebastian1,Kretzer Stefan1,Talazko Jochen1,Ziyeh Sargon1,Weber Johannes1,Els Thomas1

Affiliation:

1. From the Department of Neurology (M.R., A.H., S. Krüger, S. Kretzer, T.E.); the Department of Nuclear Medicine (J.T.); and the Department of Neuroradiology (S.Z., J.W.), University of Freiburg, Germany.

Abstract

Background and Purpose— A recent study showed a dramatic increase in cerebral hemorrhage comprising atypical locations with low-frequency ultrasound–mediated recombinant tissue plasminogen activator–thrombolysis in humans. Here, we provide a possible explanation for this phenomenon by a side effect observed in a study using the similar ultrasound device. Methods— The study was originally undertaken to investigate by transcranial Doppler sonography, positron emission tomography and perfusion MRI whether transcranial application of wide-field low-frequency ultrasound (300 kHz) improves cerebral hemodynamics in patients with cerebral small vessel disease. Results— Showing no clear positive effect on cerebral hemodynamics in 4 patients and on cerebral perfusion (positron emission tomography) in 2 patients, the study has been terminated early because of a remarkable side effect in the first patient (a 62 year-old man) undergoing perfusion-MRI: detection of frontoparietal extravasation of Gadolinium contrast agent (applied during MRI perfusion imaging preinsonation) on MRI immediately postinsonation. Conclusions— Abnormal permeability of the human blood-brain barrier can be induced by wide-field low-frequency insonation. The observed excessive bleeding rate with low-frequency sonothrombolysis might thus be attributable to primary blood-brain barrier disruption by ultrasound.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3