Neuroprotection and P450 2C11 Upregulation After Experimental Transient Ischemic Attack

Author:

Alkayed Nabil J.1,Goyagi Toru1,Joh Hung-Dong1,Klaus Judith1,Harder David R.1,Traystman Richard J.1,Hurn Patricia D.1

Affiliation:

1. From the Department of Anesthesiology and Critical Care, Johns Hopkins University School of Medicine, Baltimore, Md (N.J.A., T.G., H-D.J., J.K., R.J.T., P.D.H.), and Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee (D.R.H.).

Abstract

Background and Purpose Transient ischemic attack (TIA) is a risk factor for stroke. However, TIA may also serve as a preconditioning stimulus, reducing damage from subsequent stroke. We tested the hypothesis that experimental TIA induces expression of P450 2C11, an arachidonic acid epoxygenase that produces vasodilator epoxyeicosatrienoic acids, leading to increased tissue perfusion and reduced stroke damage. Methods Wistar rats underwent three 10-minute middle cerebral artery occlusions (TIA) or sham surgery. Three days later, animals were subjected to 2-hour middle cerebral artery occlusion and 24 hours of reperfusion. Brains were stained with 2,3,5-triphenyltetrazolium chloride for infarct size measurement or processed for quantification of P450 2C11 mRNA and protein with the use of RNase protection assay and Western blotting. Regional cerebral blood flow (CBF) at the end of 2-hour ischemia was measured in separate groups of rats with iodoantipyrine autoradiography. Results Cerebral infarct was reduced by >50% in TIA- versus sham-preconditioned animals. 2C11 mRNA and protein were increased in ipsilateral hemisphere by 3 days after TIA but not sham surgery. Induction of 2C11 by TIA was also evident in ipsilateral hemisphere at 24 hours after 2-hour middle cerebral artery occlusion and 24 hours of reperfusion. End-ischemic regional CBF was not different between TIA- and sham-pretreated groups. Conclusions We conclude that experimental TIA induces ischemic tolerance by a mechanism temporally linked to upregulation of P450 2C11. Enzyme induction does not attenuate ischemic severity by amplifying end-ischemic CBF.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3