ATP-Sensitive Potassium Channels Mediate Dilatation of Basilar Artery in Response to Intracellular Acidification In Vivo

Author:

Santa Naohiko1,Kitazono Takanari1,Ago Tetsuro1,Ooboshi Hiroaki1,Kamouchi Masahiro1,Wakisaka Masanori1,Ibayashi Setsuro1,Iida Mitsuo1

Affiliation:

1. From the Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.

Abstract

Background and Purpose— During cerebral ischemia, both hypoxia and hypercapnia appear to produce marked dilatation of the cerebral arteries. Hypercapnia and hypoxia may be accompanied by extracellular and intracellular acidosis, which is another potent dilator of cerebral arteries. However, the precise mechanism by which acidosis produces dilatation of the cerebral arteries is not fully understood. The objective of the present study was to examine the mechanisms by which intracellular acidosis produces dilatation of the basilar artery in vivo. Methods— Using a cranial window in anesthetized rats, we examined responses of the basilar artery to sodium propionate, which was used to cause intracellular acidosis specifically. Expression of subunits of potassium channels was determined by reverse transcription and polymerase chain reaction (RT-PCR). Results— Topical application of propionate increased diameter of the basilar artery in a concentration-related manner. Propionate-induced dilatation of the artery was attenuated by glibenclamide, an inhibitor of ATP-sensitive potassium channels. However, inhibitors of nitric oxide synthase ( N G -nitro- l -arginine), large-conductance calcium-activated potassium channels (iberiotoxin), and cyclooxygenase (indomethacin) did not affect the vasodilatation. Expression of mRNA for SUR2B and Kir6.1 was detected, with the use of RT-PCR, in the cultured basilar arterial muscle cells. Conclusions— The findings suggest that intracellular acidification may produce dilatation of the basilar artery through activation of ATP-sensitive potassium channels in vivo. Kir6.1/SUR2B may be the major potassium channels that mediate propionate-induced dilatation of the artery.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

Reference32 articles.

1. Iadecola C. Cerebral circulatory dysregulation in ischemia. In: Ginsberg MD Bogousslavsky J eds. Cerebrovascular Disease: Pathophysiology Diagnosis and Management. Malden Mass: Blackwell Science; 1998: 319–332.

2. Effects of extravascular acidification and extravascular alkalinization on constriction and depolarization in rat cerebral arterioles in vitro

3. pH and smooth muscle

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3