Xenon Provides Short-Term Neuroprotection in Neonatal Rats When Administered After Hypoxia-Ischemia

Author:

Dingley John1,Tooley James1,Porter Helen1,Thoresen Marianne1

Affiliation:

1. From the University of Wales Swansea (J.D.), United Kingdom; St Michael’s Hospital (J.T., M.T.), University of Bristol, United Kingdom; and Leicester Royal Infirmary (H.P.), United Kingdom.

Abstract

Background and Purpose— Brain injury after hypoxic-ischemic insults evolves via an apoptotic/necrotic cascade. Glutamate over release and N- methyl- d -aspartate (NMDA) receptor over activation (excitotoxicity) are believed to trigger this process. Xenon is a nontoxic anesthetic gas that reduces neurotransmitter release and functionally antagonizes NMDA receptors. Administering xenon to hypoxic-ischemic newborns might be clinically effective if the neurotoxic processes continue evolving after delivery. We sought to determine whether xenon administration after the initial hypoxic-ischemic insult was neuroprotective. Methods— Fifty 7-day-old rats received a 90-minute hypoxic insult after unilateral carotid ligation. They were then randomized to breathe 1 of 2 gas mixtures for 3 hours: 50% Xe/30% O 2 /20% N 2 or 30% O 2 /70% N 2 . Results— One week after hypoxic-ischemic survival, significant global protection was seen in the xenon group (80% less injury); cortex/white matter (88% versus 25%), hippocampus (62% versus 0%), basal ganglia (81% versus 25%), and thalamus (50% versus 0%; percentage of global damage score in nonxenon versus xenon groups, respectively). Conclusions— Three hours of xenon administration commenced after hypoxia-ischemia in neonatal rats provides short-term neuroprotection. This finding suggests that treatment with xenon after perinatal asphyxia would also be neuroprotective. Because xenon does not cause other neurotoxic effects and has demonstrated minimal side effects in extensive anesthesia studies, it would make an ideal candidate for the treatment after human perinatal hypoxia-ischemia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3