Plasminogen Activators Contribute to Impairment of Hypercapnic and Hypotensive Cerebrovasodilation After Cerebral Hypoxia/Ischemia in the Newborn Pig

Author:

Armstead William M.1,Cines Douglas B.1,Higazi Abd Al-Roof1

Affiliation:

1. From the Departments of Anesthesia (W.M.A.) and Pharmacology, Pathology and Laboratory Medicine (D.B.C., A.A.-R.H.), University of Pennsylvania, Philadelphia, Pa; and the Department of Clinical Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel (A.A.-R.H.).

Abstract

Background and Purpose— Babies are frequently exposed to hypoxia and ischemia during the perinatal period as a result of stroke or problems with delivery or respiratory management post delivery. The only U.S. Food and Drug Administration-approved treatment for acute stroke is the administration of tPA. Nonetheless, basic science studies indicate that tPA exhibits both beneficial and deleterious effects on central nervous system function. Cerebral hypoxia/ischemia (H/I) impairs dilation to hypercapnia and hypotension in the newborn pig. We investigated the role of exogenous and endogenous plasminogen activators (PA) in piglet hypercapnic and hypotensive dilator impairment after H/I. Methods— Responses to dilator stimuli were measured in chloralose-anesthetized piglets equipped with a closed cranial window before and after hypoxia (P o 2 35 mm Hg) and subsequent global cerebral ischemia. Data (n=6) were analyzed by repeated-measures analysis of variance. Results— Hypercapnic (P co 2 75 mm Hg) and hypotensive (mean arterial blood pressure decreased by 45%) pial artery dilation (PAD) was blunted after H/I and reversed to vasoconstriction in animals pretreated with tPA or uPA (10 −7 mol/L; 26±2, 11±1, and −4±1% for hypercapnia before, after H/I, and after H/I with tPA). In animals pretreated with EEIIMD (10 −7 mol/L), a peptide that binds uPA and tPA but does not affect proteolysis or soluble uPA receptor (suPAR, 10 −7 mol/L), which binds but does not affect the proteolytic activity of uPA. PAD induced by hypercapnia and hypotension was attenuated to a lesser extent (25±2 and 17±1% for hypercapnic PAD before and after H/I in EEIIMD-pretreated animals and 21±1 and 18±2% in suPAR-pretreated animals). Conclusions— These data show that exogenous PA administration potentiates the impairment of hypercapnic and hypotensive PAD that occurs after H/I. Inhibition of endogenous PA may ameliorate the impairment of PAD induced by hypercapnia and hypotension PAD that develops after hypoxic central nervous system injury of diverse etiologies.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3