Xanthine Oxidase–Derived Reactive Oxygen Species Convert Flow-Induced Arteriolar Dilation to Constriction in Hyperhomocysteinemia

Author:

Bagi Zsolt1,Ungvari Zoltan1,Koller Akos1

Affiliation:

1. From the Department of Pathophysiology, Semmelweis University, H-1445, Budapest, Hungary, and the Department of Physiology, New York Medical College, Valhalla, NY.

Abstract

We hypothesized that in hyperhomocysteinemia (HHcy), flow-induced arteriolar constriction is due to an enhanced generation of reactive oxygen and/or nitrogen species, causing an impairment of nitric oxide (NO) and prostaglandin mediation of the response. Changes in diameter of isolated, pressurized (at 80 mm Hg) gracilis muscle arterioles (diameter ≈170 μm) from control and methionine diet–induced HHcy rats were measured by videomicroscopy. Increases in intraluminal flow (from 0 to 25 μL/min) resulted in NO- and prostaglandin-mediated dilations of control arterioles (maximum, control, 30±4 μm) but elicited significant constrictions of HHcy arterioles (maximum, HHcy, −32±3 μm), which were abolished by the thromboxane A 2 receptor blocker SQ 29,548. Intraluminal administration of superoxide dismutase plus catalase did not affect flow-mediated dilations of control arterioles, but in HHcy arterioles, it reversed the flow-induced constrictions to dilations (maximum 18±4 μm), which were abolished by an NO synthase inhibitor. Flow-induced constrictions of HHcy arterioles were prevented by the presence of the xanthine oxidase inhibitor oxypurinol [but not by the NAD(P)H-oxidase inhibitor diphenyleneiodonium] and by urate, a known peroxynitrite scavenger. Also, authentic peroxynitrite elicited arteriolar constrictions (−31±8 μm) that were eliminated by urate and SQ 29,548. Thus, we suggest that in HHcy, xanthine oxidase–derived superoxide scavenges NO released to flow, forming peroxynitrite, which promotes release of thromboxane A 2 , resulting in arteriolar constriction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3