S17834, a New Inhibitor of Cell Adhesion and Atherosclerosis That Targets NADPH Oxidase

Author:

Cayatte Antonio J.1,Rupin Alain1,Oliver-Krasinski Jennifer1,Maitland Karlene1,Sansilvestri-Morel Patricia1,Boussard Marie-France1,Wierzbicki Michel1,Verbeuren Tony J.1,Cohen Richard A.1

Affiliation:

1. From the Vascular Biology Unit (A.J.C., J.O.-K., K.M., R.A.C.), Boston University Medical Center, Boston, Mass, and the Division of Angiology and Chemistry (A.R., P.S.-M., M.-F.B., M.W., T.J.V.), Servier Research Institute, Suresnes, France.

Abstract

Oxidant stress is involved in the events that accompany endothelial cell expression of adhesion molecules and leukocyte adherence in many disease states, including atherosclerosis. A recently discovered benzo(b)pyran-4-one derivative, S17834 (10 to 50 μmol/L), reduced tumor necrosis factor-stimulated vascular cell adhesion molecule-1 (VCAM) mRNA accumulation and protein expression in human umbilical vein endothelial cells. Intercellular cell adhesion molecule-1 and E-selectin were also inhibited by S17834, but platelet endothelial cell adhesion molecule-1 was not. Adherence of U937 monocytic cells to the endothelial cells as well as to plastic plates coated with soluble VCAM, intercellular cell adhesion molecule-1, P-selectin, and E-selectin was also decreased. Consistent with an antioxidant mechanism of action, S17834 (10 to 50 μmol/L) inhibited tumor necrosis factor-stimulated release of superoxide from endothelial cells measured by cytochrome c reduction. S17834 had no effect on superoxide produced by xanthine oxidase, indicating that rather than by acting as a scavenger of superoxide anion, the drug acts by inhibiting the production of free radicals. Indeed, S17834 inhibited NADPH oxidase activity of endothelial cell membranes. The ability to inhibit superoxide anion production appears to be key in the effect of S17834 on superoxide anion production and VCAM expression, because these actions were mimicked by adenovirus-mediated overexpression of superoxide dismutase. Furthermore, these actions may be relevant in vivo, because S17834 reduced aortic superoxide anion levels by 40% and aortic atherosclerotic lesions by 60% in apolipoprotein E-deficient mice. These results indicate that S17834 inhibits adhesion molecule expression and adherence of leukocytes to endothelial cells as well as aortic atherogenesis and that perhaps these effects can be explained by its ability to inhibit endogenous superoxide anion production.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Reference33 articles.

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3